Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034897132> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3034897132 endingPage "012043" @default.
- W3034897132 startingPage "012043" @default.
- W3034897132 abstract "Single-cell RNA sequencing (scRNA-seq) has been an important inspiration for the study of biomolecules through its reveal of cell heterogeneity. However, due to the low capture efficiency and frequent drop-out events in the single-cell sequencing process, the scRNA-seq data often has high sparsity and random missing values, which brings great difficulties to the subsequent analysis. The network propagation method based on random walk with restart (RWR) effectively fills in the missing values in the scRNA-seq data and reduces noise by referring to the prior information of gene interaction. Dimensionality reduction is also a commonly used pre-processing method for high-dimensional and sparse scRNA-seq data, which can be combined with the RWR-based data imputation to achieve noise reduction and feature extraction of scRNA-seq data. This article compares the performance of the commonly used single-cell data dimension reduction methods combined with the RWR network smoothing in different type of scRNA-seq data sets, and analyzes their applicability and stability." @default.
- W3034897132 created "2020-06-19" @default.
- W3034897132 creator A5027010870 @default.
- W3034897132 creator A5062005196 @default.
- W3034897132 creator A5079351108 @default.
- W3034897132 creator A5082084084 @default.
- W3034897132 date "2020-06-11" @default.
- W3034897132 modified "2023-10-16" @default.
- W3034897132 title "Comparative Research of Different Dimension Reduction Methods Combined with RWR Network Smoothing in Single Cell RNA-seq Data" @default.
- W3034897132 cites W1981641790 @default.
- W3034897132 cites W2011430131 @default.
- W3034897132 cites W2030017878 @default.
- W3034897132 cites W2033072655 @default.
- W3034897132 cites W2093402979 @default.
- W3034897132 cites W2165685007 @default.
- W3034897132 cites W2600453489 @default.
- W3034897132 cites W2782146634 @default.
- W3034897132 cites W2805619986 @default.
- W3034897132 cites W2951217100 @default.
- W3034897132 cites W4235169531 @default.
- W3034897132 doi "https://doi.org/10.1088/1755-1315/495/1/012043" @default.
- W3034897132 hasPublicationYear "2020" @default.
- W3034897132 type Work @default.
- W3034897132 sameAs 3034897132 @default.
- W3034897132 citedByCount "0" @default.
- W3034897132 crossrefType "journal-article" @default.
- W3034897132 hasAuthorship W3034897132A5027010870 @default.
- W3034897132 hasAuthorship W3034897132A5062005196 @default.
- W3034897132 hasAuthorship W3034897132A5079351108 @default.
- W3034897132 hasAuthorship W3034897132A5082084084 @default.
- W3034897132 hasBestOaLocation W30348971321 @default.
- W3034897132 hasConcept C111335779 @default.
- W3034897132 hasConcept C115961682 @default.
- W3034897132 hasConcept C119857082 @default.
- W3034897132 hasConcept C124101348 @default.
- W3034897132 hasConcept C154945302 @default.
- W3034897132 hasConcept C163294075 @default.
- W3034897132 hasConcept C2524010 @default.
- W3034897132 hasConcept C31972630 @default.
- W3034897132 hasConcept C33923547 @default.
- W3034897132 hasConcept C3770464 @default.
- W3034897132 hasConcept C41008148 @default.
- W3034897132 hasConcept C58041806 @default.
- W3034897132 hasConcept C70518039 @default.
- W3034897132 hasConcept C9357733 @default.
- W3034897132 hasConcept C99498987 @default.
- W3034897132 hasConceptScore W3034897132C111335779 @default.
- W3034897132 hasConceptScore W3034897132C115961682 @default.
- W3034897132 hasConceptScore W3034897132C119857082 @default.
- W3034897132 hasConceptScore W3034897132C124101348 @default.
- W3034897132 hasConceptScore W3034897132C154945302 @default.
- W3034897132 hasConceptScore W3034897132C163294075 @default.
- W3034897132 hasConceptScore W3034897132C2524010 @default.
- W3034897132 hasConceptScore W3034897132C31972630 @default.
- W3034897132 hasConceptScore W3034897132C33923547 @default.
- W3034897132 hasConceptScore W3034897132C3770464 @default.
- W3034897132 hasConceptScore W3034897132C41008148 @default.
- W3034897132 hasConceptScore W3034897132C58041806 @default.
- W3034897132 hasConceptScore W3034897132C70518039 @default.
- W3034897132 hasConceptScore W3034897132C9357733 @default.
- W3034897132 hasConceptScore W3034897132C99498987 @default.
- W3034897132 hasLocation W30348971321 @default.
- W3034897132 hasOpenAccess W3034897132 @default.
- W3034897132 hasPrimaryLocation W30348971321 @default.
- W3034897132 hasRelatedWork W1588995113 @default.
- W3034897132 hasRelatedWork W2333301859 @default.
- W3034897132 hasRelatedWork W2345596134 @default.
- W3034897132 hasRelatedWork W2886807189 @default.
- W3034897132 hasRelatedWork W2946016688 @default.
- W3034897132 hasRelatedWork W3049453136 @default.
- W3034897132 hasRelatedWork W3119637569 @default.
- W3034897132 hasRelatedWork W3215783632 @default.
- W3034897132 hasRelatedWork W4206931880 @default.
- W3034897132 hasRelatedWork W4285588712 @default.
- W3034897132 hasVolume "495" @default.
- W3034897132 isParatext "false" @default.
- W3034897132 isRetracted "false" @default.
- W3034897132 magId "3034897132" @default.
- W3034897132 workType "article" @default.