Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034907790> ?p ?o ?g. }
- W3034907790 abstract "We introduce a learning framework to infer macroscopic properties of an evolving system from longitudinal trajectories of its components. By considering probability measures on continuous paths we view this problem as a distribution regression task for continuous-time processes and propose two distinct solutions leveraging the recently established properties of the expected signature. Firstly, we embed the measures in a Hilbert space, enabling the application of an existing kernel-based technique. Secondly, we recast the complex task of learning a non-linear regression function on probability measures to a simpler functional linear regression on the signature of a single vector-valued path. We provide theoretical results on the universality of both approaches, and demonstrate empirically their robustness to densely and irregularly sampled multivariate time-series, outperforming existing methods adapted to this task on both synthetic and real-world examples from thermodynamics, mathematical finance and agricultural science." @default.
- W3034907790 created "2020-06-19" @default.
- W3034907790 creator A5023657363 @default.
- W3034907790 creator A5033716148 @default.
- W3034907790 creator A5046539767 @default.
- W3034907790 creator A5055402057 @default.
- W3034907790 creator A5087781429 @default.
- W3034907790 date "2020-06-10" @default.
- W3034907790 modified "2023-09-27" @default.
- W3034907790 title "Distribution Regression for Continuous-Time Processes via the Expected Signature." @default.
- W3034907790 cites W1972197313 @default.
- W3034907790 cites W2004095444 @default.
- W3034907790 cites W2029774109 @default.
- W3034907790 cites W2101234009 @default.
- W3034907790 cites W2103284199 @default.
- W3034907790 cites W2105353986 @default.
- W3034907790 cites W2113410727 @default.
- W3034907790 cites W2119132330 @default.
- W3034907790 cites W2137226992 @default.
- W3034907790 cites W2321579306 @default.
- W3034907790 cites W2604645045 @default.
- W3034907790 cites W2766098680 @default.
- W3034907790 cites W2952344766 @default.
- W3034907790 cites W2952400611 @default.
- W3034907790 cites W2952433032 @default.
- W3034907790 cites W2963190151 @default.
- W3034907790 cites W2963611658 @default.
- W3034907790 cites W2970040597 @default.
- W3034907790 cites W2997014690 @default.
- W3034907790 cites W3100267010 @default.
- W3034907790 cites W3101563084 @default.
- W3034907790 cites W3124875579 @default.
- W3034907790 cites W575423294 @default.
- W3034907790 cites W616109306 @default.
- W3034907790 cites W2128846462 @default.
- W3034907790 hasPublicationYear "2020" @default.
- W3034907790 type Work @default.
- W3034907790 sameAs 3034907790 @default.
- W3034907790 citedByCount "3" @default.
- W3034907790 countsByYear W30349077902021 @default.
- W3034907790 crossrefType "posted-content" @default.
- W3034907790 hasAuthorship W3034907790A5023657363 @default.
- W3034907790 hasAuthorship W3034907790A5033716148 @default.
- W3034907790 hasAuthorship W3034907790A5046539767 @default.
- W3034907790 hasAuthorship W3034907790A5055402057 @default.
- W3034907790 hasAuthorship W3034907790A5087781429 @default.
- W3034907790 hasConcept C104317684 @default.
- W3034907790 hasConcept C105795698 @default.
- W3034907790 hasConcept C119857082 @default.
- W3034907790 hasConcept C121332964 @default.
- W3034907790 hasConcept C134306372 @default.
- W3034907790 hasConcept C149441793 @default.
- W3034907790 hasConcept C154945302 @default.
- W3034907790 hasConcept C183992945 @default.
- W3034907790 hasConcept C185592680 @default.
- W3034907790 hasConcept C33923547 @default.
- W3034907790 hasConcept C41008148 @default.
- W3034907790 hasConcept C55493867 @default.
- W3034907790 hasConcept C62520636 @default.
- W3034907790 hasConcept C62799726 @default.
- W3034907790 hasConcept C63479239 @default.
- W3034907790 hasConcept C80884492 @default.
- W3034907790 hasConcept C83546350 @default.
- W3034907790 hasConceptScore W3034907790C104317684 @default.
- W3034907790 hasConceptScore W3034907790C105795698 @default.
- W3034907790 hasConceptScore W3034907790C119857082 @default.
- W3034907790 hasConceptScore W3034907790C121332964 @default.
- W3034907790 hasConceptScore W3034907790C134306372 @default.
- W3034907790 hasConceptScore W3034907790C149441793 @default.
- W3034907790 hasConceptScore W3034907790C154945302 @default.
- W3034907790 hasConceptScore W3034907790C183992945 @default.
- W3034907790 hasConceptScore W3034907790C185592680 @default.
- W3034907790 hasConceptScore W3034907790C33923547 @default.
- W3034907790 hasConceptScore W3034907790C41008148 @default.
- W3034907790 hasConceptScore W3034907790C55493867 @default.
- W3034907790 hasConceptScore W3034907790C62520636 @default.
- W3034907790 hasConceptScore W3034907790C62799726 @default.
- W3034907790 hasConceptScore W3034907790C63479239 @default.
- W3034907790 hasConceptScore W3034907790C80884492 @default.
- W3034907790 hasConceptScore W3034907790C83546350 @default.
- W3034907790 hasLocation W30349077901 @default.
- W3034907790 hasOpenAccess W3034907790 @default.
- W3034907790 hasPrimaryLocation W30349077901 @default.
- W3034907790 hasRelatedWork W1599313488 @default.
- W3034907790 hasRelatedWork W2053559248 @default.
- W3034907790 hasRelatedWork W2188848662 @default.
- W3034907790 hasRelatedWork W2247318628 @default.
- W3034907790 hasRelatedWork W2464714129 @default.
- W3034907790 hasRelatedWork W2609763701 @default.
- W3034907790 hasRelatedWork W2726321600 @default.
- W3034907790 hasRelatedWork W2750570252 @default.
- W3034907790 hasRelatedWork W2950960448 @default.
- W3034907790 hasRelatedWork W2963611658 @default.
- W3034907790 hasRelatedWork W3003189938 @default.
- W3034907790 hasRelatedWork W3024528607 @default.
- W3034907790 hasRelatedWork W304228415 @default.
- W3034907790 hasRelatedWork W3093559393 @default.
- W3034907790 hasRelatedWork W3099466591 @default.
- W3034907790 hasRelatedWork W3157517656 @default.
- W3034907790 hasRelatedWork W3167297489 @default.