Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034933863> ?p ?o ?g. }
- W3034933863 endingPage "111931" @default.
- W3034933863 startingPage "111931" @default.
- W3034933863 abstract "There is considerable demand for satellite observations that can support spatiotemporally continuous mapping of land surface temperature (LST) because of its strong relationships with many surface processes. However, the frequent occurrence of cloud cover induces a large blank area in current thermal infrared-based LST products. To effectively fill this blank area, a new method for reconstructing the cloud-covered LSTs of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) daytime observations is described using random forest (RF) regression approach. The high temporal resolution of the Meteosat Second Generation (MSG) LST product assisted in identifying the temporal variations in cloud cover. The cumulative downward shortwave radiation flux (DSSF) was estimated as the solar radiation factor for each MODIS pixel based on the MSG DSSF product to represent the impact from cloud cover on incident solar radiation. The RF approach was used to fit an LST linking model based on the datasets collected from clear-sky pixels that depicted the complicated relationship between LST and the predictor variables, including the surface vegetation index (the normalized difference vegetation index and the enhanced vegetation index), normalized difference water index, solar radiation factor, surface albedo, surface elevation, surface slope, and latitude. The fitted model was then used to reconstruct the LSTs of cloud-covered pixels. The proposed method was applied to the Terra/MODIS daytime LST product for four days in 2015, spanning different seasons in southwestern Europe. A visual inspection indicated that the reconstructed LSTs thoroughly captured the distribution of surface temperature associated with surface vegetation cover, solar radiation, and topography. The reconstructed LSTs showed similar spatial pattern according to the comparison with clear-sky LSTs from temporally adjacent days. In addition, evaluations against Global Land Data Assimilation System (GLDAS) NOAH 0.25° 3-h LST data and reference LST data derived based on in-situ air temperature measurements showed that the reconstructed LSTs presented a stable and reliable performance. The coefficients of determination derived with the GLDAS LST data were all above 0.59 on the four examined days. These results indicate that the proposed method has a strong potential for reconstructing LSTs under cloud-covered conditions and can also accurately depict the spatial patterns of LST." @default.
- W3034933863 created "2020-06-19" @default.
- W3034933863 creator A5012945245 @default.
- W3034933863 creator A5055755007 @default.
- W3034933863 date "2020-09-01" @default.
- W3034933863 modified "2023-10-17" @default.
- W3034933863 title "Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data" @default.
- W3034933863 cites W1482944618 @default.
- W3034933863 cites W1973140258 @default.
- W3034933863 cites W1974493897 @default.
- W3034933863 cites W1982651924 @default.
- W3034933863 cites W1987274444 @default.
- W3034933863 cites W1991675385 @default.
- W3034933863 cites W1999293213 @default.
- W3034933863 cites W2004541842 @default.
- W3034933863 cites W2011195592 @default.
- W3034933863 cites W2020977453 @default.
- W3034933863 cites W2021031569 @default.
- W3034933863 cites W2023306858 @default.
- W3034933863 cites W2026337749 @default.
- W3034933863 cites W2026686645 @default.
- W3034933863 cites W2027233498 @default.
- W3034933863 cites W2029739915 @default.
- W3034933863 cites W2033585087 @default.
- W3034933863 cites W2037273692 @default.
- W3034933863 cites W2045787050 @default.
- W3034933863 cites W2051238977 @default.
- W3034933863 cites W2056532445 @default.
- W3034933863 cites W2058947207 @default.
- W3034933863 cites W2067542652 @default.
- W3034933863 cites W2068618591 @default.
- W3034933863 cites W2087776137 @default.
- W3034933863 cites W2089731682 @default.
- W3034933863 cites W2090890664 @default.
- W3034933863 cites W2091738548 @default.
- W3034933863 cites W2091904937 @default.
- W3034933863 cites W2102003728 @default.
- W3034933863 cites W2103746536 @default.
- W3034933863 cites W2111119489 @default.
- W3034933863 cites W2111877476 @default.
- W3034933863 cites W2114915798 @default.
- W3034933863 cites W2119132330 @default.
- W3034933863 cites W2120537966 @default.
- W3034933863 cites W2126250722 @default.
- W3034933863 cites W2136674707 @default.
- W3034933863 cites W2140892399 @default.
- W3034933863 cites W2146645857 @default.
- W3034933863 cites W2163771233 @default.
- W3034933863 cites W2165987370 @default.
- W3034933863 cites W2177780980 @default.
- W3034933863 cites W2261059368 @default.
- W3034933863 cites W2301692565 @default.
- W3034933863 cites W2468337543 @default.
- W3034933863 cites W2607336919 @default.
- W3034933863 cites W2609881461 @default.
- W3034933863 cites W2741291720 @default.
- W3034933863 cites W2742358258 @default.
- W3034933863 cites W2765110247 @default.
- W3034933863 cites W2773566792 @default.
- W3034933863 cites W2783971324 @default.
- W3034933863 cites W2792693609 @default.
- W3034933863 cites W2795274416 @default.
- W3034933863 cites W2801586435 @default.
- W3034933863 cites W2810402378 @default.
- W3034933863 cites W2811382599 @default.
- W3034933863 cites W2888529949 @default.
- W3034933863 cites W2888549273 @default.
- W3034933863 cites W2889581973 @default.
- W3034933863 cites W2904391595 @default.
- W3034933863 cites W2911913771 @default.
- W3034933863 cites W2911964244 @default.
- W3034933863 cites W2912020146 @default.
- W3034933863 cites W2912317662 @default.
- W3034933863 cites W2913044198 @default.
- W3034933863 cites W2919424886 @default.
- W3034933863 cites W2919609020 @default.
- W3034933863 cites W2931864371 @default.
- W3034933863 cites W2943316090 @default.
- W3034933863 cites W2945225376 @default.
- W3034933863 cites W2945930257 @default.
- W3034933863 cites W2948277285 @default.
- W3034933863 cites W2958809599 @default.
- W3034933863 cites W2967660021 @default.
- W3034933863 cites W2970233752 @default.
- W3034933863 cites W3024727387 @default.
- W3034933863 doi "https://doi.org/10.1016/j.rse.2020.111931" @default.
- W3034933863 hasPublicationYear "2020" @default.
- W3034933863 type Work @default.
- W3034933863 sameAs 3034933863 @default.
- W3034933863 citedByCount "85" @default.
- W3034933863 countsByYear W30349338632020 @default.
- W3034933863 countsByYear W30349338632021 @default.
- W3034933863 countsByYear W30349338632022 @default.
- W3034933863 countsByYear W30349338632023 @default.
- W3034933863 crossrefType "journal-article" @default.
- W3034933863 hasAuthorship W3034933863A5012945245 @default.
- W3034933863 hasAuthorship W3034933863A5055755007 @default.
- W3034933863 hasConcept C108597893 @default.