Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034943673> ?p ?o ?g. }
- W3034943673 endingPage "101332" @default.
- W3034943673 startingPage "101332" @default.
- W3034943673 abstract "Six machine learning methods, including artificial neural network, gradient boosting regression, random forest, etc. were used to conduct a comparative study of building chemical composition-hardenability model for wear resistant steel. The results indicated that artificial neural network method with 32 × 32 × 32 structure had the highest prediction accuracy among the six machine learning methods based on our study. Through Pearson’ s linear correlation heat map and the feature importance parameter in the gradient boosting regression method, the contributions of different alloying elements on hardenability could be predicted, which guided us to design the further chemical composition. Finally, a reverse microalloying design based on the target performance was carried out with the artificial neural network model and an end quenching experiment using actual steel was used to evaluate the performance of model. The predicted results, calculated results and experimental results were consistent. The combination of material data base and machine learning provided an efficient approach to design the chemical composition of steels." @default.
- W3034943673 created "2020-06-19" @default.
- W3034943673 creator A5016833380 @default.
- W3034943673 creator A5042251892 @default.
- W3034943673 creator A5043619771 @default.
- W3034943673 creator A5044467187 @default.
- W3034943673 creator A5052045981 @default.
- W3034943673 creator A5064416759 @default.
- W3034943673 creator A5077660190 @default.
- W3034943673 date "2020-09-01" @default.
- W3034943673 modified "2023-10-16" @default.
- W3034943673 title "Machine learning guided methods in building chemical composition-hardenability model for wear-resistant steel" @default.
- W3034943673 cites W1617495083 @default.
- W3034943673 cites W1965433237 @default.
- W3034943673 cites W1967565480 @default.
- W3034943673 cites W1973359397 @default.
- W3034943673 cites W1979047002 @default.
- W3034943673 cites W1995672548 @default.
- W3034943673 cites W2008419076 @default.
- W3034943673 cites W2011307992 @default.
- W3034943673 cites W2014299763 @default.
- W3034943673 cites W2018190727 @default.
- W3034943673 cites W2021443456 @default.
- W3034943673 cites W2021770651 @default.
- W3034943673 cites W2052792818 @default.
- W3034943673 cites W2076869068 @default.
- W3034943673 cites W2086747728 @default.
- W3034943673 cites W2255278421 @default.
- W3034943673 cites W2735284728 @default.
- W3034943673 cites W2794792904 @default.
- W3034943673 cites W2903845243 @default.
- W3034943673 cites W2921873493 @default.
- W3034943673 cites W2922151845 @default.
- W3034943673 cites W2922381318 @default.
- W3034943673 cites W2948389893 @default.
- W3034943673 cites W2963784900 @default.
- W3034943673 cites W2969389191 @default.
- W3034943673 cites W2995012791 @default.
- W3034943673 cites W4247712068 @default.
- W3034943673 doi "https://doi.org/10.1016/j.mtcomm.2020.101332" @default.
- W3034943673 hasPublicationYear "2020" @default.
- W3034943673 type Work @default.
- W3034943673 sameAs 3034943673 @default.
- W3034943673 citedByCount "4" @default.
- W3034943673 countsByYear W30349436732022 @default.
- W3034943673 countsByYear W30349436732023 @default.
- W3034943673 crossrefType "journal-article" @default.
- W3034943673 hasAuthorship W3034943673A5016833380 @default.
- W3034943673 hasAuthorship W3034943673A5042251892 @default.
- W3034943673 hasAuthorship W3034943673A5043619771 @default.
- W3034943673 hasAuthorship W3034943673A5044467187 @default.
- W3034943673 hasAuthorship W3034943673A5052045981 @default.
- W3034943673 hasAuthorship W3034943673A5064416759 @default.
- W3034943673 hasAuthorship W3034943673A5077660190 @default.
- W3034943673 hasConcept C119857082 @default.
- W3034943673 hasConcept C121332964 @default.
- W3034943673 hasConcept C121745418 @default.
- W3034943673 hasConcept C149849071 @default.
- W3034943673 hasConcept C154945302 @default.
- W3034943673 hasConcept C169258074 @default.
- W3034943673 hasConcept C191897082 @default.
- W3034943673 hasConcept C192562407 @default.
- W3034943673 hasConcept C195678695 @default.
- W3034943673 hasConcept C2780026712 @default.
- W3034943673 hasConcept C41008148 @default.
- W3034943673 hasConcept C46686674 @default.
- W3034943673 hasConcept C48921125 @default.
- W3034943673 hasConcept C50644808 @default.
- W3034943673 hasConcept C62520636 @default.
- W3034943673 hasConcept C70153297 @default.
- W3034943673 hasConcept C91881484 @default.
- W3034943673 hasConcept C97355855 @default.
- W3034943673 hasConceptScore W3034943673C119857082 @default.
- W3034943673 hasConceptScore W3034943673C121332964 @default.
- W3034943673 hasConceptScore W3034943673C121745418 @default.
- W3034943673 hasConceptScore W3034943673C149849071 @default.
- W3034943673 hasConceptScore W3034943673C154945302 @default.
- W3034943673 hasConceptScore W3034943673C169258074 @default.
- W3034943673 hasConceptScore W3034943673C191897082 @default.
- W3034943673 hasConceptScore W3034943673C192562407 @default.
- W3034943673 hasConceptScore W3034943673C195678695 @default.
- W3034943673 hasConceptScore W3034943673C2780026712 @default.
- W3034943673 hasConceptScore W3034943673C41008148 @default.
- W3034943673 hasConceptScore W3034943673C46686674 @default.
- W3034943673 hasConceptScore W3034943673C48921125 @default.
- W3034943673 hasConceptScore W3034943673C50644808 @default.
- W3034943673 hasConceptScore W3034943673C62520636 @default.
- W3034943673 hasConceptScore W3034943673C70153297 @default.
- W3034943673 hasConceptScore W3034943673C91881484 @default.
- W3034943673 hasConceptScore W3034943673C97355855 @default.
- W3034943673 hasFunder F4320321570 @default.
- W3034943673 hasFunder F4320325365 @default.
- W3034943673 hasFunder F4320335787 @default.
- W3034943673 hasLocation W30349436731 @default.
- W3034943673 hasOpenAccess W3034943673 @default.
- W3034943673 hasPrimaryLocation W30349436731 @default.
- W3034943673 hasRelatedWork W2955385375 @default.
- W3034943673 hasRelatedWork W3006165631 @default.