Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034949062> ?p ?o ?g. }
- W3034949062 endingPage "25" @default.
- W3034949062 startingPage "1" @default.
- W3034949062 abstract "With the spiraling pandemic of the Coronavirus Disease 2019 (COVID-19), it has becoming inherently important to disseminate accurate and timely information about the disease. Due to the ubiquity of Internet connectivity and smart devices, social sensing is emerging as a dynamic AI-driven sensing paradigm to extract real-time observations from online users. In this paper, we propose CovidSens, a vision of social sensing-based risk alert systems to spontaneously obtain and analyze social data to infer the state of the COVID-19 propagation. CovidSens can actively help to keep the general public informed about the COVID-19 spread and identify risk-prone areas by inferring future propagation patterns. The CovidSens concept is motivated by three observations: (1) people have been actively sharing their state of health and experience of the COVID-19 via online social media, (2) official warning channels and news agencies are relatively slower than people reporting their observations and experiences about COVID-19 on social media, and (3) online users are frequently equipped with substantially capable mobile devices that are able to perform non-trivial on-device computation for data processing and analytics. We envision an unprecedented opportunity to leverage the posts generated by the ordinary people to build a real-time sensing and analytic system for gathering and circulating vital information of the COVID-19 propagation. Specifically, the vision of CovidSens attempts to answer the questions: How to distill reliable information about the COVID-19 with the coexistence of prevailing rumors and misinformation in the social media? How to inform the general public about the latest state of the spread timely and effectively, and alert them to remain prepared? How to leverage the computational power on the edge devices (e.g., smartphones, IoT devices, UAVs) to construct fully integrated edge-based social sensing platforms for rapid detection of the COVID-19 spread? In this vision paper, we discuss the roles of CovidSens and identify the potential challenges in developing reliable social sensing-based risk alert systems. We envision that approaches originating from multiple disciplines (e.g., AI, estimation theory, machine learning, constrained optimization) can be effective in addressing the challenges. Finally, we outline a few research directions for future work in CovidSens." @default.
- W3034949062 created "2020-06-19" @default.
- W3034949062 creator A5025156730 @default.
- W3034949062 creator A5046454314 @default.
- W3034949062 date "2020-06-12" @default.
- W3034949062 modified "2023-10-15" @default.
- W3034949062 title "CovidSens: a vision on reliable social sensing for COVID-19" @default.
- W3034949062 cites W143008383 @default.
- W3034949062 cites W1500258577 @default.
- W3034949062 cites W1528108190 @default.
- W3034949062 cites W1852752031 @default.
- W3034949062 cites W1961375973 @default.
- W3034949062 cites W1967647772 @default.
- W3034949062 cites W1970024489 @default.
- W3034949062 cites W1972548856 @default.
- W3034949062 cites W1975472271 @default.
- W3034949062 cites W1998212475 @default.
- W3034949062 cites W1998840937 @default.
- W3034949062 cites W2003096040 @default.
- W3034949062 cites W2009043302 @default.
- W3034949062 cites W2013598124 @default.
- W3034949062 cites W2037176437 @default.
- W3034949062 cites W2038946499 @default.
- W3034949062 cites W2056904026 @default.
- W3034949062 cites W2068372477 @default.
- W3034949062 cites W2076762727 @default.
- W3034949062 cites W2098195044 @default.
- W3034949062 cites W2099696079 @default.
- W3034949062 cites W2114048923 @default.
- W3034949062 cites W2118388899 @default.
- W3034949062 cites W2120467164 @default.
- W3034949062 cites W2131369712 @default.
- W3034949062 cites W2135035282 @default.
- W3034949062 cites W2138720424 @default.
- W3034949062 cites W2142687577 @default.
- W3034949062 cites W2155548535 @default.
- W3034949062 cites W2181061855 @default.
- W3034949062 cites W218142243 @default.
- W3034949062 cites W2254433317 @default.
- W3034949062 cites W2283694230 @default.
- W3034949062 cites W2340137273 @default.
- W3034949062 cites W2343678873 @default.
- W3034949062 cites W2418803210 @default.
- W3034949062 cites W2437617937 @default.
- W3034949062 cites W2488984245 @default.
- W3034949062 cites W2510927418 @default.
- W3034949062 cites W2557700421 @default.
- W3034949062 cites W2571149404 @default.
- W3034949062 cites W2763067454 @default.
- W3034949062 cites W2782905119 @default.
- W3034949062 cites W2783588057 @default.
- W3034949062 cites W2786070938 @default.
- W3034949062 cites W2800636364 @default.
- W3034949062 cites W2887866773 @default.
- W3034949062 cites W2895432151 @default.
- W3034949062 cites W2897592641 @default.
- W3034949062 cites W2899051668 @default.
- W3034949062 cites W2901312569 @default.
- W3034949062 cites W2905282361 @default.
- W3034949062 cites W2906670185 @default.
- W3034949062 cites W2914427239 @default.
- W3034949062 cites W2915575762 @default.
- W3034949062 cites W2916353465 @default.
- W3034949062 cites W2918716113 @default.
- W3034949062 cites W2932305125 @default.
- W3034949062 cites W2946086526 @default.
- W3034949062 cites W2963388706 @default.
- W3034949062 cites W2965360106 @default.
- W3034949062 cites W2969527441 @default.
- W3034949062 cites W2975594471 @default.
- W3034949062 cites W2976751052 @default.
- W3034949062 cites W2976767258 @default.
- W3034949062 cites W2982492177 @default.
- W3034949062 cites W2992908339 @default.
- W3034949062 cites W2998045710 @default.
- W3034949062 cites W2999018093 @default.
- W3034949062 cites W2999027483 @default.
- W3034949062 cites W3003550519 @default.
- W3034949062 cites W3007825318 @default.
- W3034949062 cites W3007955788 @default.
- W3034949062 cites W3008443627 @default.
- W3034949062 cites W3008582897 @default.
- W3034949062 cites W3008738665 @default.
- W3034949062 cites W3016837845 @default.
- W3034949062 cites W3019853626 @default.
- W3034949062 cites W3020514163 @default.
- W3034949062 cites W3047024287 @default.
- W3034949062 cites W3047412441 @default.
- W3034949062 cites W3047567221 @default.
- W3034949062 cites W3082454389 @default.
- W3034949062 cites W3100321043 @default.
- W3034949062 cites W3104737638 @default.
- W3034949062 cites W4251968409 @default.
- W3034949062 cites W4253271685 @default.
- W3034949062 cites W4253387571 @default.
- W3034949062 doi "https://doi.org/10.1007/s10462-020-09852-3" @default.
- W3034949062 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7291936" @default.
- W3034949062 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32836651" @default.