Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034973700> ?p ?o ?g. }
- W3034973700 endingPage "117671" @default.
- W3034973700 startingPage "117671" @default.
- W3034973700 abstract "Abstract Ambient air ozone (O3), a secondary photochemical pollutant, is seriously harmful to human health. Accurate estimation of O3 exposure requires the ability to monitor O3 surface concentration with a high spatiotemporal resolution. Several spatiotemporal land use regression (LUR) models have integrated meteorological factors based on different statistical algorithms to support such epidemiological studies. From among such various existing statistical algorithms, we aim to identify a high-efficiency modeling method, as well as the most suitable lengths of the modeling period (time scale). Three types of typical spatiotemporal LUR models based on parametric, semi-parametric, and non-parametric statistic methods, respectively, are considered to predict daily ground-level O3 in the megacity of Tianjin, China. Based on monthly, seasonal (cold and warm), and annual time scales, these models include: a series of monthly hybrid LUR (Two-stage) models consisting of two sub-models based on the multiple linear regression (MLR) algorithm, general additive mixed models (GAMMs), and land use random forest (LURF) models. Leave-one-out cross-validation was performed to evaluate the temporal and spatial predictive accuracy of each model using the adjusted coefficient of determination (adjR2CV) and root mean square error (RMSECV). In the GAMMs and LURF models, models using a shorter time scale (monthly models) outperformed those using a longer one. In monthly models, the GAMMs performed the best, with the highest average adjR2CV (0.747) and the lowest average RMSECV (15.721 μg/m3), followed by the LURF models (average adjR2CV = 0.695, average RMSECV = 16.405), and the Two-stage models (average adjR2CV = 0.466, average RMSECV = 23.934). Thus, the modeling format consisting of a shorter time scale and the GAMM algorithm performs relatively well in predicting daily O3 pollution on a megacity scale. These findings can be used to select appropriate modeling methods for epidemiological research of O3 pollution." @default.
- W3034973700 created "2020-06-19" @default.
- W3034973700 creator A5017796690 @default.
- W3034973700 creator A5044785404 @default.
- W3034973700 creator A5066487529 @default.
- W3034973700 date "2020-09-01" @default.
- W3034973700 modified "2023-09-24" @default.
- W3034973700 title "Spatiotemporal ozone pollution LUR models: Suitable statistical algorithms and time scales for a megacity scale" @default.
- W3034973700 cites W1173523477 @default.
- W3034973700 cites W1984470640 @default.
- W3034973700 cites W1991350060 @default.
- W3034973700 cites W1993631132 @default.
- W3034973700 cites W2000109687 @default.
- W3034973700 cites W2001451992 @default.
- W3034973700 cites W2011740524 @default.
- W3034973700 cites W2021276288 @default.
- W3034973700 cites W2070535949 @default.
- W3034973700 cites W2083944525 @default.
- W3034973700 cites W2111125854 @default.
- W3034973700 cites W213284021 @default.
- W3034973700 cites W2136331793 @default.
- W3034973700 cites W2141130051 @default.
- W3034973700 cites W2168658532 @default.
- W3034973700 cites W2171642129 @default.
- W3034973700 cites W2316167246 @default.
- W3034973700 cites W2517850251 @default.
- W3034973700 cites W2557117995 @default.
- W3034973700 cites W2559599946 @default.
- W3034973700 cites W2620300958 @default.
- W3034973700 cites W2777210516 @default.
- W3034973700 cites W2793935423 @default.
- W3034973700 cites W2794522794 @default.
- W3034973700 cites W2800133189 @default.
- W3034973700 cites W2801493073 @default.
- W3034973700 cites W2802180781 @default.
- W3034973700 cites W2804239627 @default.
- W3034973700 cites W2865430977 @default.
- W3034973700 cites W2885419738 @default.
- W3034973700 cites W2886895727 @default.
- W3034973700 cites W2888327598 @default.
- W3034973700 cites W2889985978 @default.
- W3034973700 cites W2891892220 @default.
- W3034973700 cites W2900423580 @default.
- W3034973700 cites W2905925844 @default.
- W3034973700 cites W2909938372 @default.
- W3034973700 cites W2911964244 @default.
- W3034973700 cites W2912750253 @default.
- W3034973700 cites W2920374068 @default.
- W3034973700 cites W2932464630 @default.
- W3034973700 cites W2944545717 @default.
- W3034973700 cites W2952297896 @default.
- W3034973700 cites W822495916 @default.
- W3034973700 doi "https://doi.org/10.1016/j.atmosenv.2020.117671" @default.
- W3034973700 hasPublicationYear "2020" @default.
- W3034973700 type Work @default.
- W3034973700 sameAs 3034973700 @default.
- W3034973700 citedByCount "11" @default.
- W3034973700 countsByYear W30349737002021 @default.
- W3034973700 countsByYear W30349737002022 @default.
- W3034973700 crossrefType "journal-article" @default.
- W3034973700 hasAuthorship W3034973700A5017796690 @default.
- W3034973700 hasAuthorship W3034973700A5044785404 @default.
- W3034973700 hasAuthorship W3034973700A5066487529 @default.
- W3034973700 hasConcept C11413529 @default.
- W3034973700 hasConcept C127040729 @default.
- W3034973700 hasConcept C127313418 @default.
- W3034973700 hasConcept C136264566 @default.
- W3034973700 hasConcept C153294291 @default.
- W3034973700 hasConcept C162324750 @default.
- W3034973700 hasConcept C18903297 @default.
- W3034973700 hasConcept C205649164 @default.
- W3034973700 hasConcept C2778755073 @default.
- W3034973700 hasConcept C39432304 @default.
- W3034973700 hasConcept C41008148 @default.
- W3034973700 hasConcept C49204034 @default.
- W3034973700 hasConcept C508106653 @default.
- W3034973700 hasConcept C521259446 @default.
- W3034973700 hasConcept C58640448 @default.
- W3034973700 hasConcept C86803240 @default.
- W3034973700 hasConcept C91586092 @default.
- W3034973700 hasConceptScore W3034973700C11413529 @default.
- W3034973700 hasConceptScore W3034973700C127040729 @default.
- W3034973700 hasConceptScore W3034973700C127313418 @default.
- W3034973700 hasConceptScore W3034973700C136264566 @default.
- W3034973700 hasConceptScore W3034973700C153294291 @default.
- W3034973700 hasConceptScore W3034973700C162324750 @default.
- W3034973700 hasConceptScore W3034973700C18903297 @default.
- W3034973700 hasConceptScore W3034973700C205649164 @default.
- W3034973700 hasConceptScore W3034973700C2778755073 @default.
- W3034973700 hasConceptScore W3034973700C39432304 @default.
- W3034973700 hasConceptScore W3034973700C41008148 @default.
- W3034973700 hasConceptScore W3034973700C49204034 @default.
- W3034973700 hasConceptScore W3034973700C508106653 @default.
- W3034973700 hasConceptScore W3034973700C521259446 @default.
- W3034973700 hasConceptScore W3034973700C58640448 @default.
- W3034973700 hasConceptScore W3034973700C86803240 @default.
- W3034973700 hasConceptScore W3034973700C91586092 @default.
- W3034973700 hasLocation W30349737001 @default.