Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035008906> ?p ?o ?g. }
- W3035008906 abstract "The success of a text simplification system heavily depends on the quality and quantity of complex-simple sentence pairs in the training corpus, which are extracted by aligning sentences between parallel articles. To evaluate and improve sentence alignment quality, we create two manually annotated sentence-aligned datasets from two commonly used text simplification corpora, Newsela and Wikipedia. We propose a novel neural CRF alignment model which not only leverages the sequential nature of sentences in parallel documents but also utilizes a neural sentence pair model to capture semantic similarity. Experiments demonstrate that our proposed approach outperforms all the previous work on monolingual sentence alignment task by more than 5 points in F1. We apply our CRF aligner to construct two new text simplification datasets, Newsela-Auto and Wiki-Auto, which are much larger and of better quality compared to the existing datasets. A Transformer-based seq2seq model trained on our datasets establishes a new state-of-the-art for text simplification in both automatic and human evaluation." @default.
- W3035008906 created "2020-06-19" @default.
- W3035008906 creator A5001637611 @default.
- W3035008906 creator A5058348064 @default.
- W3035008906 creator A5070905937 @default.
- W3035008906 creator A5072753988 @default.
- W3035008906 creator A5073746065 @default.
- W3035008906 date "2020-01-01" @default.
- W3035008906 modified "2023-09-30" @default.
- W3035008906 title "Neural CRF Model for Sentence Alignment in Text Simplification" @default.
- W3035008906 cites W1507711477 @default.
- W3035008906 cites W1629275429 @default.
- W3035008906 cites W1746111881 @default.
- W3035008906 cites W1983574954 @default.
- W3035008906 cites W1989420837 @default.
- W3035008906 cites W2042262613 @default.
- W3035008906 cites W2061235289 @default.
- W3035008906 cites W2064675550 @default.
- W3035008906 cites W2073449354 @default.
- W3035008906 cites W2101105183 @default.
- W3035008906 cites W2105673178 @default.
- W3035008906 cites W2108373063 @default.
- W3035008906 cites W2109802560 @default.
- W3035008906 cites W2109881807 @default.
- W3035008906 cites W2119954850 @default.
- W3035008906 cites W2138238299 @default.
- W3035008906 cites W2141766660 @default.
- W3035008906 cites W2156422881 @default.
- W3035008906 cites W2250531756 @default.
- W3035008906 cites W2250539671 @default.
- W3035008906 cites W2251127293 @default.
- W3035008906 cites W2251933807 @default.
- W3035008906 cites W2252164374 @default.
- W3035008906 cites W2252272516 @default.
- W3035008906 cites W2293959877 @default.
- W3035008906 cites W2296307963 @default.
- W3035008906 cites W2401830275 @default.
- W3035008906 cites W2461871142 @default.
- W3035008906 cites W2534253848 @default.
- W3035008906 cites W2558395983 @default.
- W3035008906 cites W2605243085 @default.
- W3035008906 cites W2608265559 @default.
- W3035008906 cites W2608787653 @default.
- W3035008906 cites W2741816383 @default.
- W3035008906 cites W2743653651 @default.
- W3035008906 cites W2771588894 @default.
- W3035008906 cites W2774217864 @default.
- W3035008906 cites W2807539165 @default.
- W3035008906 cites W2876799257 @default.
- W3035008906 cites W2927213876 @default.
- W3035008906 cites W2951251261 @default.
- W3035008906 cites W2963341956 @default.
- W3035008906 cites W2963403868 @default.
- W3035008906 cites W2963658612 @default.
- W3035008906 cites W2963918774 @default.
- W3035008906 cites W2963937837 @default.
- W3035008906 cites W2986148666 @default.
- W3035008906 cites W2996403597 @default.
- W3035008906 cites W3036120435 @default.
- W3035008906 cites W43782033 @default.
- W3035008906 cites W45452291 @default.
- W3035008906 doi "https://doi.org/10.18653/v1/2020.acl-main.709" @default.
- W3035008906 hasPublicationYear "2020" @default.
- W3035008906 type Work @default.
- W3035008906 sameAs 3035008906 @default.
- W3035008906 citedByCount "37" @default.
- W3035008906 countsByYear W30350089062019 @default.
- W3035008906 countsByYear W30350089062020 @default.
- W3035008906 countsByYear W30350089062021 @default.
- W3035008906 countsByYear W30350089062022 @default.
- W3035008906 countsByYear W30350089062023 @default.
- W3035008906 crossrefType "proceedings-article" @default.
- W3035008906 hasAuthorship W3035008906A5001637611 @default.
- W3035008906 hasAuthorship W3035008906A5058348064 @default.
- W3035008906 hasAuthorship W3035008906A5070905937 @default.
- W3035008906 hasAuthorship W3035008906A5072753988 @default.
- W3035008906 hasAuthorship W3035008906A5073746065 @default.
- W3035008906 hasBestOaLocation W30350089061 @default.
- W3035008906 hasConcept C121332964 @default.
- W3035008906 hasConcept C154945302 @default.
- W3035008906 hasConcept C162324750 @default.
- W3035008906 hasConcept C165801399 @default.
- W3035008906 hasConcept C187736073 @default.
- W3035008906 hasConcept C199360897 @default.
- W3035008906 hasConcept C204321447 @default.
- W3035008906 hasConcept C2777530160 @default.
- W3035008906 hasConcept C2780451532 @default.
- W3035008906 hasConcept C2780801425 @default.
- W3035008906 hasConcept C41008148 @default.
- W3035008906 hasConcept C59415355 @default.
- W3035008906 hasConcept C62520636 @default.
- W3035008906 hasConcept C66322947 @default.
- W3035008906 hasConceptScore W3035008906C121332964 @default.
- W3035008906 hasConceptScore W3035008906C154945302 @default.
- W3035008906 hasConceptScore W3035008906C162324750 @default.
- W3035008906 hasConceptScore W3035008906C165801399 @default.
- W3035008906 hasConceptScore W3035008906C187736073 @default.
- W3035008906 hasConceptScore W3035008906C199360897 @default.
- W3035008906 hasConceptScore W3035008906C204321447 @default.
- W3035008906 hasConceptScore W3035008906C2777530160 @default.