Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035028305> ?p ?o ?g. }
- W3035028305 endingPage "104512" @default.
- W3035028305 startingPage "104512" @default.
- W3035028305 abstract "Superpermeability (super-k) flow zones in carbonate reservoirs are thought to be controlled by bioturbation—related burrow networks, e.g., burrow pores of Thalassinoides. To improve the current understanding, this study investigated Thalassinoides and associated passive fill in the Upper Jubaila Member of the Upper Jurassic Jubaila Formation, central Saudi Arabia. Analysis of the elemental and mineralogical compositions of powder samples from the passive fill and burrow matrix, and thin sections of selected burrow matrix samples were conducted to determine the origin of the passive fill. The goal, herein, is to infer the flow properties of the bioturbated strata of the Upper Jubaila Member based on the occurrence of this passive fill in the burrow pores of the Thalassinoides. Compared to the burrow matrix, the analyzed passive fill exhibit marked differences in elemental composition, suggesting a much younger and different origin than that of the marine carbonates of the Upper Jubaila Member. A CaO plus MgO concentration below 28% and an elevated SiO2 plus Al2O3 concentration above 45% suggest a clay-dominated passive fill. The reddish and brownish colorations of the passive fill are attributed to the presence of iron oxyhydroxides, as indicated by the elevated Fe2O3 concentration (a mean of 5.8% ± 1.7%), and a mineralogical composition with elevated percentages of goethite and hematite. The normalized rare earth element (REE) pattern of the passive fill is consistent with that of lithogenous (siliciclastic) sources, which are likely deposited in a well-oxygenated environment, as suggested by the redox-sensitive elements and normalized REEs. These sources probably originate in hot humid environment, as indicated by the chemical index of alteration (CIA) (>80). The above geochemical data suggest that the passive fill was derived from soils similar to Mediterranean Terra Rossa soils and postdate the formation of burrow pores in the Thalassinoides-bearing strata. This could have occurred after exposure of the Upper Jubaila Member. Terra Rossa soil most likely reached the Thalassinoides-bearing strata from the surface through vertical fractures and karst features, filled burrow pores, fractures along bedding plains, and even intercrystalline pores. The occurrence of Terra Rossa soil in the burrows and intercrystalline pores of the Thalassinoides-bearing strata implies that the pore system of the Upper Jubaila Member possessed connected pathways that enabled soil infiltration followed by simultaneous precipitation in the burrows and intercrystalline pores. The presence of these connected burrow pores containing shafts with diameters ranges from 1 to 5 cm suggests a superpermeable storage capacity and presence of a superflow unit in the Upper Jubaila Member. This study provides an excellent example to better understand the controls of super-k zones in carbonate reservoirs." @default.
- W3035028305 created "2020-06-19" @default.
- W3035028305 creator A5027197211 @default.
- W3035028305 creator A5034460286 @default.
- W3035028305 creator A5035537771 @default.
- W3035028305 creator A5040857714 @default.
- W3035028305 creator A5047905444 @default.
- W3035028305 date "2020-10-01" @default.
- W3035028305 modified "2023-09-25" @default.
- W3035028305 title "Evidence for the development of a superpermeability flow zone by bioturbation in shallow marine strata, upper Jubaila Formation, central Saudi Arabia" @default.
- W3035028305 cites W1892420698 @default.
- W3035028305 cites W1929564300 @default.
- W3035028305 cites W1951154838 @default.
- W3035028305 cites W1966207504 @default.
- W3035028305 cites W1977380062 @default.
- W3035028305 cites W1977401328 @default.
- W3035028305 cites W1978264842 @default.
- W3035028305 cites W1980881493 @default.
- W3035028305 cites W1985695799 @default.
- W3035028305 cites W1996178485 @default.
- W3035028305 cites W2007615265 @default.
- W3035028305 cites W2011801766 @default.
- W3035028305 cites W2016379558 @default.
- W3035028305 cites W2016837262 @default.
- W3035028305 cites W2022517585 @default.
- W3035028305 cites W203584942 @default.
- W3035028305 cites W2052326672 @default.
- W3035028305 cites W2052646003 @default.
- W3035028305 cites W2056449223 @default.
- W3035028305 cites W2057391595 @default.
- W3035028305 cites W2060374979 @default.
- W3035028305 cites W2083645617 @default.
- W3035028305 cites W2088381531 @default.
- W3035028305 cites W2089623158 @default.
- W3035028305 cites W2093730098 @default.
- W3035028305 cites W2103805628 @default.
- W3035028305 cites W2129225270 @default.
- W3035028305 cites W2130381696 @default.
- W3035028305 cites W2131123833 @default.
- W3035028305 cites W2137111266 @default.
- W3035028305 cites W2153482727 @default.
- W3035028305 cites W2153947402 @default.
- W3035028305 cites W2154266138 @default.
- W3035028305 cites W2154565678 @default.
- W3035028305 cites W2157891449 @default.
- W3035028305 cites W2164099617 @default.
- W3035028305 cites W2283305001 @default.
- W3035028305 cites W2332591108 @default.
- W3035028305 cites W2345406409 @default.
- W3035028305 cites W2553478883 @default.
- W3035028305 cites W2591344511 @default.
- W3035028305 cites W2598376814 @default.
- W3035028305 cites W2606002868 @default.
- W3035028305 cites W2684577149 @default.
- W3035028305 cites W2766559441 @default.
- W3035028305 cites W2774797267 @default.
- W3035028305 cites W2783166760 @default.
- W3035028305 cites W2923992571 @default.
- W3035028305 cites W2944267028 @default.
- W3035028305 cites W2978412508 @default.
- W3035028305 cites W2989415696 @default.
- W3035028305 cites W2990128836 @default.
- W3035028305 cites W2990427812 @default.
- W3035028305 cites W2995034329 @default.
- W3035028305 cites W570692802 @default.
- W3035028305 doi "https://doi.org/10.1016/j.marpetgeo.2020.104512" @default.
- W3035028305 hasPublicationYear "2020" @default.
- W3035028305 type Work @default.
- W3035028305 sameAs 3035028305 @default.
- W3035028305 citedByCount "17" @default.
- W3035028305 countsByYear W30350283052021 @default.
- W3035028305 countsByYear W30350283052022 @default.
- W3035028305 countsByYear W30350283052023 @default.
- W3035028305 crossrefType "journal-article" @default.
- W3035028305 hasAuthorship W3035028305A5027197211 @default.
- W3035028305 hasAuthorship W3035028305A5034460286 @default.
- W3035028305 hasAuthorship W3035028305A5035537771 @default.
- W3035028305 hasAuthorship W3035028305A5040857714 @default.
- W3035028305 hasAuthorship W3035028305A5047905444 @default.
- W3035028305 hasConcept C109007969 @default.
- W3035028305 hasConcept C126753816 @default.
- W3035028305 hasConcept C127313418 @default.
- W3035028305 hasConcept C151730666 @default.
- W3035028305 hasConcept C153018869 @default.
- W3035028305 hasConcept C160937034 @default.
- W3035028305 hasConcept C17409809 @default.
- W3035028305 hasConcept C175422226 @default.
- W3035028305 hasConcept C178790620 @default.
- W3035028305 hasConcept C185592680 @default.
- W3035028305 hasConcept C2779131772 @default.
- W3035028305 hasConcept C2780659211 @default.
- W3035028305 hasConcept C2816523 @default.
- W3035028305 hasConcept C93257316 @default.
- W3035028305 hasConceptScore W3035028305C109007969 @default.
- W3035028305 hasConceptScore W3035028305C126753816 @default.
- W3035028305 hasConceptScore W3035028305C127313418 @default.
- W3035028305 hasConceptScore W3035028305C151730666 @default.
- W3035028305 hasConceptScore W3035028305C153018869 @default.