Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035102456> ?p ?o ?g. }
- W3035102456 endingPage "9694" @default.
- W3035102456 startingPage "9681" @default.
- W3035102456 abstract "Visual surface defect inspection for metal part has become a rapidly developing research field within the last decade. But due to the variances of defect shapes and scales, the inspection of tiny and irregular shape defects has posed challenges on the robustness of the inspection model. In this context, a deep learning method based on the deformable convolution and concatenate feature pyramid (CFP) neural networks is proposed to improve the inspection. We design a deformable convolution layer in the neural networks as an attention mechanism to adaptively extract the features of defect shape and location, which enhances the inspection of the defects with large shape variances. We also merge the multiple hierarchical features collected from different deformable convolution layers by the CFP, which improves the inspection of tiny defects. The results show that the proposed method has a better generalization ability than traditional convolution neural networks." @default.
- W3035102456 created "2020-06-19" @default.
- W3035102456 creator A5039962474 @default.
- W3035102456 creator A5048579705 @default.
- W3035102456 creator A5054510847 @default.
- W3035102456 creator A5083331685 @default.
- W3035102456 date "2020-12-01" @default.
- W3035102456 modified "2023-10-07" @default.
- W3035102456 title "Visual Defect Inspection of Metal Part Surface via Deformable Convolution and Concatenate Feature Pyramid Neural Networks" @default.
- W3035102456 cites W114517082 @default.
- W3035102456 cites W1588043677 @default.
- W3035102456 cites W1677182931 @default.
- W3035102456 cites W1806891645 @default.
- W3035102456 cites W1986306729 @default.
- W3035102456 cites W1991589289 @default.
- W3035102456 cites W2062789600 @default.
- W3035102456 cites W2092072518 @default.
- W3035102456 cites W2096065637 @default.
- W3035102456 cites W2125629257 @default.
- W3035102456 cites W2144506857 @default.
- W3035102456 cites W2145023731 @default.
- W3035102456 cites W2161969291 @default.
- W3035102456 cites W2194775991 @default.
- W3035102456 cites W2294120432 @default.
- W3035102456 cites W234388709 @default.
- W3035102456 cites W2416529854 @default.
- W3035102456 cites W2545941211 @default.
- W3035102456 cites W2592867418 @default.
- W3035102456 cites W2601564443 @default.
- W3035102456 cites W2736973763 @default.
- W3035102456 cites W2766997090 @default.
- W3035102456 cites W2890751655 @default.
- W3035102456 cites W2913074553 @default.
- W3035102456 cites W2919115771 @default.
- W3035102456 cites W2944303778 @default.
- W3035102456 cites W2945708832 @default.
- W3035102456 cites W2963446712 @default.
- W3035102456 cites W4238404964 @default.
- W3035102456 cites W65623452 @default.
- W3035102456 doi "https://doi.org/10.1109/tim.2020.3001695" @default.
- W3035102456 hasPublicationYear "2020" @default.
- W3035102456 type Work @default.
- W3035102456 sameAs 3035102456 @default.
- W3035102456 citedByCount "21" @default.
- W3035102456 countsByYear W30351024562021 @default.
- W3035102456 countsByYear W30351024562022 @default.
- W3035102456 countsByYear W30351024562023 @default.
- W3035102456 crossrefType "journal-article" @default.
- W3035102456 hasAuthorship W3035102456A5039962474 @default.
- W3035102456 hasAuthorship W3035102456A5048579705 @default.
- W3035102456 hasAuthorship W3035102456A5054510847 @default.
- W3035102456 hasAuthorship W3035102456A5083331685 @default.
- W3035102456 hasConcept C104317684 @default.
- W3035102456 hasConcept C108583219 @default.
- W3035102456 hasConcept C138885662 @default.
- W3035102456 hasConcept C142575187 @default.
- W3035102456 hasConcept C151730666 @default.
- W3035102456 hasConcept C153180895 @default.
- W3035102456 hasConcept C154945302 @default.
- W3035102456 hasConcept C185592680 @default.
- W3035102456 hasConcept C2524010 @default.
- W3035102456 hasConcept C2776401178 @default.
- W3035102456 hasConcept C2779343474 @default.
- W3035102456 hasConcept C31972630 @default.
- W3035102456 hasConcept C33923547 @default.
- W3035102456 hasConcept C41008148 @default.
- W3035102456 hasConcept C41895202 @default.
- W3035102456 hasConcept C45347329 @default.
- W3035102456 hasConcept C50644808 @default.
- W3035102456 hasConcept C52622490 @default.
- W3035102456 hasConcept C55493867 @default.
- W3035102456 hasConcept C63479239 @default.
- W3035102456 hasConcept C81363708 @default.
- W3035102456 hasConcept C86803240 @default.
- W3035102456 hasConceptScore W3035102456C104317684 @default.
- W3035102456 hasConceptScore W3035102456C108583219 @default.
- W3035102456 hasConceptScore W3035102456C138885662 @default.
- W3035102456 hasConceptScore W3035102456C142575187 @default.
- W3035102456 hasConceptScore W3035102456C151730666 @default.
- W3035102456 hasConceptScore W3035102456C153180895 @default.
- W3035102456 hasConceptScore W3035102456C154945302 @default.
- W3035102456 hasConceptScore W3035102456C185592680 @default.
- W3035102456 hasConceptScore W3035102456C2524010 @default.
- W3035102456 hasConceptScore W3035102456C2776401178 @default.
- W3035102456 hasConceptScore W3035102456C2779343474 @default.
- W3035102456 hasConceptScore W3035102456C31972630 @default.
- W3035102456 hasConceptScore W3035102456C33923547 @default.
- W3035102456 hasConceptScore W3035102456C41008148 @default.
- W3035102456 hasConceptScore W3035102456C41895202 @default.
- W3035102456 hasConceptScore W3035102456C45347329 @default.
- W3035102456 hasConceptScore W3035102456C50644808 @default.
- W3035102456 hasConceptScore W3035102456C52622490 @default.
- W3035102456 hasConceptScore W3035102456C55493867 @default.
- W3035102456 hasConceptScore W3035102456C63479239 @default.
- W3035102456 hasConceptScore W3035102456C81363708 @default.
- W3035102456 hasConceptScore W3035102456C86803240 @default.
- W3035102456 hasFunder F4320321001 @default.
- W3035102456 hasFunder F4320321540 @default.