Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035110948> ?p ?o ?g. }
- W3035110948 abstract "It has been exactly a decade since the first establishment of SPMRL, a research initiative unifying multiple research efforts to address the peculiar challenges of Statistical Parsing for Morphologically-Rich Languages (MRLs). Here we reflect on parsing MRLs in that decade, highlight the solutions and lessons learned for the architectural, modeling and lexical challenges in the pre-neural era, and argue that similar challenges re-emerge in neural architectures for MRLs. We then aim to offer a climax, suggesting that incorporating symbolic ideas proposed in SPMRL terms into nowadays neural architectures has the potential to push NLP for MRLs to a new level. We sketch a strategies for designing Neural Models for MRLs (NMRL), and showcase preliminary support for these strategies via investigating the task of multi-tagging in Hebrew, a morphologically-rich, high-fusion, language." @default.
- W3035110948 created "2020-06-19" @default.
- W3035110948 creator A5005137956 @default.
- W3035110948 creator A5045680110 @default.
- W3035110948 creator A5049561362 @default.
- W3035110948 creator A5063283689 @default.
- W3035110948 date "2020-01-01" @default.
- W3035110948 modified "2023-10-13" @default.
- W3035110948 title "From SPMRL to NMRL: What Did We Learn (and Unlearn) in a Decade of Parsing Morphologically-Rich Languages (MRLs)?" @default.
- W3035110948 cites W1614298861 @default.
- W3035110948 cites W1902237438 @default.
- W3035110948 cites W2056894934 @default.
- W3035110948 cites W2064675550 @default.
- W3035110948 cites W2072479265 @default.
- W3035110948 cites W2098949613 @default.
- W3035110948 cites W2109000768 @default.
- W3035110948 cites W2113024997 @default.
- W3035110948 cites W2114887620 @default.
- W3035110948 cites W2116983617 @default.
- W3035110948 cites W2133564696 @default.
- W3035110948 cites W2137471318 @default.
- W3035110948 cites W2149709850 @default.
- W3035110948 cites W2161446215 @default.
- W3035110948 cites W2173928607 @default.
- W3035110948 cites W2250405765 @default.
- W3035110948 cites W2250539671 @default.
- W3035110948 cites W2251088156 @default.
- W3035110948 cites W2296073425 @default.
- W3035110948 cites W2301095666 @default.
- W3035110948 cites W2491886887 @default.
- W3035110948 cites W2493916176 @default.
- W3035110948 cites W2549835527 @default.
- W3035110948 cites W2551458098 @default.
- W3035110948 cites W2557283755 @default.
- W3035110948 cites W2569308312 @default.
- W3035110948 cites W2573357741 @default.
- W3035110948 cites W2574640638 @default.
- W3035110948 cites W2606342375 @default.
- W3035110948 cites W2625730075 @default.
- W3035110948 cites W2799072540 @default.
- W3035110948 cites W2804033347 @default.
- W3035110948 cites W2807107383 @default.
- W3035110948 cites W2889467844 @default.
- W3035110948 cites W2889474778 @default.
- W3035110948 cites W2889947987 @default.
- W3035110948 cites W2913340405 @default.
- W3035110948 cites W2929068185 @default.
- W3035110948 cites W2946359678 @default.
- W3035110948 cites W2962739339 @default.
- W3035110948 cites W2962784628 @default.
- W3035110948 cites W2963042536 @default.
- W3035110948 cites W2963143606 @default.
- W3035110948 cites W2963310665 @default.
- W3035110948 cites W2963341956 @default.
- W3035110948 cites W2963383094 @default.
- W3035110948 cites W2963403868 @default.
- W3035110948 cites W2963751529 @default.
- W3035110948 cites W2964005834 @default.
- W3035110948 cites W2964217371 @default.
- W3035110948 cites W2965373594 @default.
- W3035110948 cites W2970016216 @default.
- W3035110948 cites W2970171327 @default.
- W3035110948 cites W2970597249 @default.
- W3035110948 cites W2971072618 @default.
- W3035110948 cites W2990704537 @default.
- W3035110948 cites W3013840636 @default.
- W3035110948 cites W3101763502 @default.
- W3035110948 cites W3104723404 @default.
- W3035110948 cites W2141095279 @default.
- W3035110948 doi "https://doi.org/10.18653/v1/2020.acl-main.660" @default.
- W3035110948 hasPublicationYear "2020" @default.
- W3035110948 type Work @default.
- W3035110948 sameAs 3035110948 @default.
- W3035110948 citedByCount "20" @default.
- W3035110948 countsByYear W30351109482020 @default.
- W3035110948 countsByYear W30351109482021 @default.
- W3035110948 countsByYear W30351109482022 @default.
- W3035110948 countsByYear W30351109482023 @default.
- W3035110948 crossrefType "proceedings-article" @default.
- W3035110948 hasAuthorship W3035110948A5005137956 @default.
- W3035110948 hasAuthorship W3035110948A5045680110 @default.
- W3035110948 hasAuthorship W3035110948A5049561362 @default.
- W3035110948 hasAuthorship W3035110948A5063283689 @default.
- W3035110948 hasBestOaLocation W30351109481 @default.
- W3035110948 hasConcept C11413529 @default.
- W3035110948 hasConcept C138885662 @default.
- W3035110948 hasConcept C154945302 @default.
- W3035110948 hasConcept C162324750 @default.
- W3035110948 hasConcept C186644900 @default.
- W3035110948 hasConcept C187736073 @default.
- W3035110948 hasConcept C204321447 @default.
- W3035110948 hasConcept C2779231336 @default.
- W3035110948 hasConcept C2780451532 @default.
- W3035110948 hasConcept C41008148 @default.
- W3035110948 hasConcept C41895202 @default.
- W3035110948 hasConceptScore W3035110948C11413529 @default.
- W3035110948 hasConceptScore W3035110948C138885662 @default.
- W3035110948 hasConceptScore W3035110948C154945302 @default.
- W3035110948 hasConceptScore W3035110948C162324750 @default.
- W3035110948 hasConceptScore W3035110948C186644900 @default.