Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035122910> ?p ?o ?g. }
- W3035122910 abstract "Recent advancements in Neural Architecture Search (NAS) resulted in finding new state-of-the-art Artificial Neural Network (ANN) solutions for tasks like image classification, object detection, or semantic segmentation without substantial human supervision. In this paper, we focus on exploring NAS for a dense prediction task that is image denoising. Due to a costly training procedure, most NAS solutions for image enhancement rely on reinforcement learning or evolutionary algorithm exploration, which usually take weeks (or even months) to train. Therefore, we introduce a new efficient implementation of various superkernel techniques that enable fast (6-8 RTX2080 GPU hours) single-shot training of models for dense predictions. We demonstrate the effectiveness of our method on the SIDD+ benchmark for image denoising [3]." @default.
- W3035122910 created "2020-06-19" @default.
- W3035122910 creator A5040781600 @default.
- W3035122910 creator A5046415071 @default.
- W3035122910 creator A5051616752 @default.
- W3035122910 creator A5077737106 @default.
- W3035122910 creator A5081273045 @default.
- W3035122910 date "2020-06-01" @default.
- W3035122910 modified "2023-09-26" @default.
- W3035122910 title "Superkernel Neural Architecture Search for Image Denoising" @default.
- W3035122910 cites W2056370875 @default.
- W3035122910 cites W2130975789 @default.
- W3035122910 cites W2508457857 @default.
- W3035122910 cites W2799192307 @default.
- W3035122910 cites W2922904612 @default.
- W3035122910 cites W2954128622 @default.
- W3035122910 cites W2963136578 @default.
- W3035122910 cites W2963494934 @default.
- W3035122910 cites W2963762505 @default.
- W3035122910 cites W2964081807 @default.
- W3035122910 cites W2964101377 @default.
- W3035122910 cites W2964125708 @default.
- W3035122910 cites W2965658867 @default.
- W3035122910 cites W2967502735 @default.
- W3035122910 cites W2967733054 @default.
- W3035122910 cites W2985577924 @default.
- W3035122910 cites W3034448817 @default.
- W3035122910 cites W3105260381 @default.
- W3035122910 doi "https://doi.org/10.1109/cvprw50498.2020.00250" @default.
- W3035122910 hasPublicationYear "2020" @default.
- W3035122910 type Work @default.
- W3035122910 sameAs 3035122910 @default.
- W3035122910 citedByCount "9" @default.
- W3035122910 countsByYear W30351229102020 @default.
- W3035122910 countsByYear W30351229102021 @default.
- W3035122910 countsByYear W30351229102022 @default.
- W3035122910 countsByYear W30351229102023 @default.
- W3035122910 crossrefType "proceedings-article" @default.
- W3035122910 hasAuthorship W3035122910A5040781600 @default.
- W3035122910 hasAuthorship W3035122910A5046415071 @default.
- W3035122910 hasAuthorship W3035122910A5051616752 @default.
- W3035122910 hasAuthorship W3035122910A5077737106 @default.
- W3035122910 hasAuthorship W3035122910A5081273045 @default.
- W3035122910 hasBestOaLocation W30351229102 @default.
- W3035122910 hasConcept C115961682 @default.
- W3035122910 hasConcept C119857082 @default.
- W3035122910 hasConcept C123657996 @default.
- W3035122910 hasConcept C124504099 @default.
- W3035122910 hasConcept C127413603 @default.
- W3035122910 hasConcept C13280743 @default.
- W3035122910 hasConcept C142362112 @default.
- W3035122910 hasConcept C153180895 @default.
- W3035122910 hasConcept C153349607 @default.
- W3035122910 hasConcept C154945302 @default.
- W3035122910 hasConcept C163294075 @default.
- W3035122910 hasConcept C185798385 @default.
- W3035122910 hasConcept C201995342 @default.
- W3035122910 hasConcept C205649164 @default.
- W3035122910 hasConcept C2776151529 @default.
- W3035122910 hasConcept C2780451532 @default.
- W3035122910 hasConcept C2983327147 @default.
- W3035122910 hasConcept C41008148 @default.
- W3035122910 hasConcept C50644808 @default.
- W3035122910 hasConcept C75294576 @default.
- W3035122910 hasConcept C89600930 @default.
- W3035122910 hasConcept C97541855 @default.
- W3035122910 hasConcept C99498987 @default.
- W3035122910 hasConceptScore W3035122910C115961682 @default.
- W3035122910 hasConceptScore W3035122910C119857082 @default.
- W3035122910 hasConceptScore W3035122910C123657996 @default.
- W3035122910 hasConceptScore W3035122910C124504099 @default.
- W3035122910 hasConceptScore W3035122910C127413603 @default.
- W3035122910 hasConceptScore W3035122910C13280743 @default.
- W3035122910 hasConceptScore W3035122910C142362112 @default.
- W3035122910 hasConceptScore W3035122910C153180895 @default.
- W3035122910 hasConceptScore W3035122910C153349607 @default.
- W3035122910 hasConceptScore W3035122910C154945302 @default.
- W3035122910 hasConceptScore W3035122910C163294075 @default.
- W3035122910 hasConceptScore W3035122910C185798385 @default.
- W3035122910 hasConceptScore W3035122910C201995342 @default.
- W3035122910 hasConceptScore W3035122910C205649164 @default.
- W3035122910 hasConceptScore W3035122910C2776151529 @default.
- W3035122910 hasConceptScore W3035122910C2780451532 @default.
- W3035122910 hasConceptScore W3035122910C2983327147 @default.
- W3035122910 hasConceptScore W3035122910C41008148 @default.
- W3035122910 hasConceptScore W3035122910C50644808 @default.
- W3035122910 hasConceptScore W3035122910C75294576 @default.
- W3035122910 hasConceptScore W3035122910C89600930 @default.
- W3035122910 hasConceptScore W3035122910C97541855 @default.
- W3035122910 hasConceptScore W3035122910C99498987 @default.
- W3035122910 hasLocation W30351229101 @default.
- W3035122910 hasLocation W30351229102 @default.
- W3035122910 hasOpenAccess W3035122910 @default.
- W3035122910 hasPrimaryLocation W30351229101 @default.
- W3035122910 hasRelatedWork W2112454231 @default.
- W3035122910 hasRelatedWork W2138214894 @default.
- W3035122910 hasRelatedWork W2549765251 @default.
- W3035122910 hasRelatedWork W2734888972 @default.
- W3035122910 hasRelatedWork W2944590497 @default.
- W3035122910 hasRelatedWork W2983785000 @default.