Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035130140> ?p ?o ?g. }
- W3035130140 endingPage "113637" @default.
- W3035130140 startingPage "113637" @default.
- W3035130140 abstract "Abstract A major challenge in automating the production of a large number of forecasts, as often required in many business applications, is the need for robust and reliable predictions. Increased noise, outliers and structural changes in the series, all too common in practice, can severely affect the quality of forecasting. We investigate ways to increase the reliability of exponential smoothing forecasts, the most widely used family of forecasting models in business forecasting. We consider two alternative sets of approaches, one stemming from statistics and one from machine learning. To this end, we adapt M-estimators, boosting and inverse boosting to parameter estimation for exponential smoothing. We propose appropriate modifications that are necessary for time series forecasting while aiming to obtain scalable algorithms. We evaluate the various estimation methods using multiple real datasets and find that several approaches outperform the widely used maximum likelihood estimation. The novelty of this work lies in (1) demonstrating the usefulness of M-estimators, (2) and of inverse boosting, which outperforms standard boosting approaches, and (3) a comparative look at statistics versus machine learning inspired approaches." @default.
- W3035130140 created "2020-06-19" @default.
- W3035130140 creator A5035725819 @default.
- W3035130140 creator A5046809367 @default.
- W3035130140 creator A5064340262 @default.
- W3035130140 creator A5090748216 @default.
- W3035130140 date "2020-12-01" @default.
- W3035130140 modified "2023-09-24" @default.
- W3035130140 title "Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning" @default.
- W3035130140 cites W129305155 @default.
- W3035130140 cites W1502810280 @default.
- W3035130140 cites W1605688901 @default.
- W3035130140 cites W1678356000 @default.
- W3035130140 cites W1964864228 @default.
- W3035130140 cites W1980905009 @default.
- W3035130140 cites W1988790447 @default.
- W3035130140 cites W2004005279 @default.
- W3035130140 cites W2012266776 @default.
- W3035130140 cites W2014115301 @default.
- W3035130140 cites W2024046085 @default.
- W3035130140 cites W2024199384 @default.
- W3035130140 cites W2026219386 @default.
- W3035130140 cites W2033655022 @default.
- W3035130140 cites W2034430502 @default.
- W3035130140 cites W2036969206 @default.
- W3035130140 cites W2038697332 @default.
- W3035130140 cites W2038849095 @default.
- W3035130140 cites W2039425303 @default.
- W3035130140 cites W2040640338 @default.
- W3035130140 cites W2040726420 @default.
- W3035130140 cites W2046456988 @default.
- W3035130140 cites W2047694274 @default.
- W3035130140 cites W2048665112 @default.
- W3035130140 cites W2049235942 @default.
- W3035130140 cites W2053840674 @default.
- W3035130140 cites W2058009001 @default.
- W3035130140 cites W2060050130 @default.
- W3035130140 cites W2070493638 @default.
- W3035130140 cites W2075965721 @default.
- W3035130140 cites W2076711696 @default.
- W3035130140 cites W2077148960 @default.
- W3035130140 cites W2077832579 @default.
- W3035130140 cites W2083825134 @default.
- W3035130140 cites W2088883866 @default.
- W3035130140 cites W2096156657 @default.
- W3035130140 cites W2098148222 @default.
- W3035130140 cites W2098207764 @default.
- W3035130140 cites W2103614420 @default.
- W3035130140 cites W2105910985 @default.
- W3035130140 cites W2121043290 @default.
- W3035130140 cites W2124030982 @default.
- W3035130140 cites W2124193432 @default.
- W3035130140 cites W2126926806 @default.
- W3035130140 cites W2132782512 @default.
- W3035130140 cites W2145881755 @default.
- W3035130140 cites W2152209375 @default.
- W3035130140 cites W2152761983 @default.
- W3035130140 cites W2154326182 @default.
- W3035130140 cites W2158196600 @default.
- W3035130140 cites W2159651898 @default.
- W3035130140 cites W2162174678 @default.
- W3035130140 cites W2172195373 @default.
- W3035130140 cites W2260161590 @default.
- W3035130140 cites W2334382349 @default.
- W3035130140 cites W2342352817 @default.
- W3035130140 cites W2409919419 @default.
- W3035130140 cites W2417021467 @default.
- W3035130140 cites W2540674420 @default.
- W3035130140 cites W2551161908 @default.
- W3035130140 cites W2584560953 @default.
- W3035130140 cites W2607714372 @default.
- W3035130140 cites W2610219179 @default.
- W3035130140 cites W2760331245 @default.
- W3035130140 cites W2787031726 @default.
- W3035130140 cites W2804569679 @default.
- W3035130140 cites W2887123801 @default.
- W3035130140 cites W2907251284 @default.
- W3035130140 cites W2924706473 @default.
- W3035130140 cites W3004732066 @default.
- W3035130140 cites W3125633690 @default.
- W3035130140 cites W4212883601 @default.
- W3035130140 cites W4244934246 @default.
- W3035130140 cites W4249736682 @default.
- W3035130140 doi "https://doi.org/10.1016/j.eswa.2020.113637" @default.
- W3035130140 hasPublicationYear "2020" @default.
- W3035130140 type Work @default.
- W3035130140 sameAs 3035130140 @default.
- W3035130140 citedByCount "28" @default.
- W3035130140 countsByYear W30351301402020 @default.
- W3035130140 countsByYear W30351301402021 @default.
- W3035130140 countsByYear W30351301402022 @default.
- W3035130140 countsByYear W30351301402023 @default.
- W3035130140 crossrefType "journal-article" @default.
- W3035130140 hasAuthorship W3035130140A5035725819 @default.
- W3035130140 hasAuthorship W3035130140A5046809367 @default.
- W3035130140 hasAuthorship W3035130140A5064340262 @default.
- W3035130140 hasAuthorship W3035130140A5090748216 @default.
- W3035130140 hasBestOaLocation W30351301402 @default.