Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035134423> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3035134423 endingPage "012073" @default.
- W3035134423 startingPage "012073" @default.
- W3035134423 abstract "Abstract Machine learning, which reveals the complex nonlinear relationship in the archived data, is a powerful complement to theory, experiment, and modeling. In this study we attempted to predict solidification cracking susceptibility of stainless steels as a function of chemistry and processing parameters using machine learning with a data set that contains about 600 longitudinal varestraint test results. Four machine learning models, i.e. decision tree, random forest, shallow neural network and deep neural network, were used to mine the data set. Our results show: deep neural network outperformed other models in prediction accuracy; tree-based models have accepted accuracy and better interpretability than neural network; machine learning models transforms scattered experimental data points into a map in high-dimensional chemistry and processing parameters space. The combination of different machine learning models reveals that the solidification cracking susceptibility of stainless steels was mainly determined by the ratio of Ni content to Cr content, impurity element content and the strain level." @default.
- W3035134423 created "2020-06-19" @default.
- W3035134423 creator A5041189907 @default.
- W3035134423 creator A5053097929 @default.
- W3035134423 date "2020-05-01" @default.
- W3035134423 modified "2023-09-23" @default.
- W3035134423 title "Predicting solidification cracking susceptibility of stainless steels using machine learning" @default.
- W3035134423 cites W2000959643 @default.
- W3035134423 cites W2019561942 @default.
- W3035134423 cites W2044354127 @default.
- W3035134423 cites W2044942902 @default.
- W3035134423 cites W2111051539 @default.
- W3035134423 cites W2793376982 @default.
- W3035134423 cites W2884430236 @default.
- W3035134423 cites W2902390267 @default.
- W3035134423 cites W2919115771 @default.
- W3035134423 cites W2950128007 @default.
- W3035134423 doi "https://doi.org/10.1088/1757-899x/861/1/012073" @default.
- W3035134423 hasPublicationYear "2020" @default.
- W3035134423 type Work @default.
- W3035134423 sameAs 3035134423 @default.
- W3035134423 citedByCount "2" @default.
- W3035134423 countsByYear W30351344232022 @default.
- W3035134423 crossrefType "journal-article" @default.
- W3035134423 hasAuthorship W3035134423A5041189907 @default.
- W3035134423 hasAuthorship W3035134423A5053097929 @default.
- W3035134423 hasBestOaLocation W30351344231 @default.
- W3035134423 hasConcept C113174947 @default.
- W3035134423 hasConcept C119857082 @default.
- W3035134423 hasConcept C134306372 @default.
- W3035134423 hasConcept C154945302 @default.
- W3035134423 hasConcept C159985019 @default.
- W3035134423 hasConcept C177264268 @default.
- W3035134423 hasConcept C192562407 @default.
- W3035134423 hasConcept C199360897 @default.
- W3035134423 hasConcept C2781067378 @default.
- W3035134423 hasConcept C33923547 @default.
- W3035134423 hasConcept C41008148 @default.
- W3035134423 hasConcept C50644808 @default.
- W3035134423 hasConcept C58396970 @default.
- W3035134423 hasConcept C84525736 @default.
- W3035134423 hasConceptScore W3035134423C113174947 @default.
- W3035134423 hasConceptScore W3035134423C119857082 @default.
- W3035134423 hasConceptScore W3035134423C134306372 @default.
- W3035134423 hasConceptScore W3035134423C154945302 @default.
- W3035134423 hasConceptScore W3035134423C159985019 @default.
- W3035134423 hasConceptScore W3035134423C177264268 @default.
- W3035134423 hasConceptScore W3035134423C192562407 @default.
- W3035134423 hasConceptScore W3035134423C199360897 @default.
- W3035134423 hasConceptScore W3035134423C2781067378 @default.
- W3035134423 hasConceptScore W3035134423C33923547 @default.
- W3035134423 hasConceptScore W3035134423C41008148 @default.
- W3035134423 hasConceptScore W3035134423C50644808 @default.
- W3035134423 hasConceptScore W3035134423C58396970 @default.
- W3035134423 hasConceptScore W3035134423C84525736 @default.
- W3035134423 hasIssue "1" @default.
- W3035134423 hasLocation W30351344231 @default.
- W3035134423 hasOpenAccess W3035134423 @default.
- W3035134423 hasPrimaryLocation W30351344231 @default.
- W3035134423 hasRelatedWork W2954804306 @default.
- W3035134423 hasRelatedWork W2999615587 @default.
- W3035134423 hasRelatedWork W3006943036 @default.
- W3035134423 hasRelatedWork W3012234327 @default.
- W3035134423 hasRelatedWork W3094337650 @default.
- W3035134423 hasRelatedWork W3203961807 @default.
- W3035134423 hasRelatedWork W4205364923 @default.
- W3035134423 hasRelatedWork W4206534706 @default.
- W3035134423 hasRelatedWork W4229079080 @default.
- W3035134423 hasRelatedWork W4320854072 @default.
- W3035134423 hasVolume "861" @default.
- W3035134423 isParatext "false" @default.
- W3035134423 isRetracted "false" @default.
- W3035134423 magId "3035134423" @default.
- W3035134423 workType "article" @default.