Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035208052> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3035208052 endingPage "45" @default.
- W3035208052 startingPage "22" @default.
- W3035208052 abstract "Purpose Since the issuance in 2009, the digital currency has enjoyed an increasing popularity and has become one of the most important options for global investors. The purpose of this paper is to propose a hybrid model ( KDJ–Markov chain) which integrates the advantages of the stochastic index (KDJ) and grey Markov chain methods and provide a useful decision support tool for investors participating in the digital currency market. Design/methodology/approach Taking Litecoin's closing price prediction as an example, the closing prices from May 2 to June 20, 2017, are used as the training set, while those from June 21 to August 9, 2017, are used as the test set. In addition, an adaptive KDJ–Markov chain is proposed to enhance the adaptability for dynamic transaction information. And the paper verifies the effectiveness of the KDJ–Markov chain method and adaptive KDJ–Markov chain method. Findings The results show that the proposed methods can provide a reliable foundation for market analysis and investment decisions. Under the circumstances the accuracy of the training set and the accuracy of the test set are 76% and 78%, respectively. Practical implications This study not only solves the problems that KDJ method cannot accurately predict the next day's state and the grey Markov chain method cannot divide the states very well, but it also provides two useful decision support tools for investors to make more scientific and reasonable decisions for digital currency where there are no existing methods to analyze the fluctuation. Originality/value A new approach to analyze the fluctuation of digital currency, in which there are no existing methods, is proposed based on the stochastic index (KDJ) and grey Markov chain methods. And both of these two models have high accuracy." @default.
- W3035208052 created "2020-06-19" @default.
- W3035208052 creator A5011619805 @default.
- W3035208052 creator A5048119294 @default.
- W3035208052 creator A5049529830 @default.
- W3035208052 creator A5075736599 @default.
- W3035208052 date "2020-06-12" @default.
- W3035208052 modified "2023-10-02" @default.
- W3035208052 title "Forecasting the price trends of digital currency: a hybrid model integrating the stochastic index and grey Markov chain methods" @default.
- W3035208052 cites W1867274177 @default.
- W3035208052 cites W1992665910 @default.
- W3035208052 cites W2005424446 @default.
- W3035208052 cites W2031118743 @default.
- W3035208052 cites W2052206016 @default.
- W3035208052 cites W2117603680 @default.
- W3035208052 cites W2145501956 @default.
- W3035208052 cites W2185239270 @default.
- W3035208052 cites W2338264693 @default.
- W3035208052 cites W2530733378 @default.
- W3035208052 cites W2539680302 @default.
- W3035208052 cites W2554359686 @default.
- W3035208052 cites W2574055960 @default.
- W3035208052 cites W2601386739 @default.
- W3035208052 cites W2713695834 @default.
- W3035208052 cites W2750543937 @default.
- W3035208052 cites W2764117820 @default.
- W3035208052 cites W2790958077 @default.
- W3035208052 cites W2794141870 @default.
- W3035208052 cites W2807710380 @default.
- W3035208052 cites W2808807067 @default.
- W3035208052 cites W2810385412 @default.
- W3035208052 cites W2891442374 @default.
- W3035208052 cites W2908199484 @default.
- W3035208052 cites W2942833625 @default.
- W3035208052 doi "https://doi.org/10.1108/gs-12-2019-0068" @default.
- W3035208052 hasPublicationYear "2020" @default.
- W3035208052 type Work @default.
- W3035208052 sameAs 3035208052 @default.
- W3035208052 citedByCount "8" @default.
- W3035208052 countsByYear W30352080522021 @default.
- W3035208052 countsByYear W30352080522022 @default.
- W3035208052 countsByYear W30352080522023 @default.
- W3035208052 crossrefType "journal-article" @default.
- W3035208052 hasAuthorship W3035208052A5011619805 @default.
- W3035208052 hasAuthorship W3035208052A5048119294 @default.
- W3035208052 hasAuthorship W3035208052A5049529830 @default.
- W3035208052 hasAuthorship W3035208052A5075736599 @default.
- W3035208052 hasConcept C10138342 @default.
- W3035208052 hasConcept C119857082 @default.
- W3035208052 hasConcept C136764020 @default.
- W3035208052 hasConcept C141121606 @default.
- W3035208052 hasConcept C149782125 @default.
- W3035208052 hasConcept C162324750 @default.
- W3035208052 hasConcept C177264268 @default.
- W3035208052 hasConcept C199360897 @default.
- W3035208052 hasConcept C2777382242 @default.
- W3035208052 hasConcept C2778775528 @default.
- W3035208052 hasConcept C41008148 @default.
- W3035208052 hasConcept C48220719 @default.
- W3035208052 hasConcept C556758197 @default.
- W3035208052 hasConcept C75949130 @default.
- W3035208052 hasConcept C98763669 @default.
- W3035208052 hasConceptScore W3035208052C10138342 @default.
- W3035208052 hasConceptScore W3035208052C119857082 @default.
- W3035208052 hasConceptScore W3035208052C136764020 @default.
- W3035208052 hasConceptScore W3035208052C141121606 @default.
- W3035208052 hasConceptScore W3035208052C149782125 @default.
- W3035208052 hasConceptScore W3035208052C162324750 @default.
- W3035208052 hasConceptScore W3035208052C177264268 @default.
- W3035208052 hasConceptScore W3035208052C199360897 @default.
- W3035208052 hasConceptScore W3035208052C2777382242 @default.
- W3035208052 hasConceptScore W3035208052C2778775528 @default.
- W3035208052 hasConceptScore W3035208052C41008148 @default.
- W3035208052 hasConceptScore W3035208052C48220719 @default.
- W3035208052 hasConceptScore W3035208052C556758197 @default.
- W3035208052 hasConceptScore W3035208052C75949130 @default.
- W3035208052 hasConceptScore W3035208052C98763669 @default.
- W3035208052 hasIssue "1" @default.
- W3035208052 hasLocation W30352080521 @default.
- W3035208052 hasOpenAccess W3035208052 @default.
- W3035208052 hasPrimaryLocation W30352080521 @default.
- W3035208052 hasRelatedWork W2251458588 @default.
- W3035208052 hasRelatedWork W2482736599 @default.
- W3035208052 hasRelatedWork W2617729518 @default.
- W3035208052 hasRelatedWork W2902580619 @default.
- W3035208052 hasRelatedWork W2914823947 @default.
- W3035208052 hasRelatedWork W2945095450 @default.
- W3035208052 hasRelatedWork W3108998481 @default.
- W3035208052 hasRelatedWork W3159168502 @default.
- W3035208052 hasRelatedWork W3194741359 @default.
- W3035208052 hasRelatedWork W2754515659 @default.
- W3035208052 hasVolume "11" @default.
- W3035208052 isParatext "false" @default.
- W3035208052 isRetracted "false" @default.
- W3035208052 magId "3035208052" @default.
- W3035208052 workType "article" @default.