Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035247631> ?p ?o ?g. }
- W3035247631 endingPage "3382" @default.
- W3035247631 startingPage "3382" @default.
- W3035247631 abstract "In this study, we investigate a novel idea of using synthetic images of bolts which are generated from a graphical model to train a deep learning model for loosened bolt detection. Firstly, a framework for bolt-loosening detection using image-based deep learning and computer graphics is proposed. Next, the feasibility of the proposed framework is demonstrated through the bolt-loosening monitoring of a lab-scaled bolted joint model. For practicality, the proposed idea is evaluated on the real-scale bolted connections of a historical truss bridge in Danang, Vietnam. The results show that the deep learning model trained by the synthesized images can achieve accurate bolt recognitions and looseness detections. The proposed methodology could help to reduce the time and cost associated with the collection of high-quality training data and further accelerate the applicability of vision-based deep learning models trained on synthetic data in practice." @default.
- W3035247631 created "2020-06-19" @default.
- W3035247631 creator A5019288063 @default.
- W3035247631 creator A5028371557 @default.
- W3035247631 creator A5050548060 @default.
- W3035247631 creator A5064553812 @default.
- W3035247631 creator A5074092342 @default.
- W3035247631 creator A5085107699 @default.
- W3035247631 date "2020-06-15" @default.
- W3035247631 modified "2023-10-16" @default.
- W3035247631 title "Bolt-Loosening Monitoring Framework Using an Image-Based Deep Learning and Graphical Model" @default.
- W3035247631 cites W1970392706 @default.
- W3035247631 cites W2010355016 @default.
- W3035247631 cites W2030033481 @default.
- W3035247631 cites W2088049833 @default.
- W3035247631 cites W2126052502 @default.
- W3035247631 cites W2145023731 @default.
- W3035247631 cites W2146746994 @default.
- W3035247631 cites W2147926935 @default.
- W3035247631 cites W2155510173 @default.
- W3035247631 cites W2280371073 @default.
- W3035247631 cites W2332885174 @default.
- W3035247631 cites W2395579298 @default.
- W3035247631 cites W2478677992 @default.
- W3035247631 cites W2485149579 @default.
- W3035247631 cites W2546715677 @default.
- W3035247631 cites W2746337766 @default.
- W3035247631 cites W2748378127 @default.
- W3035247631 cites W2779497038 @default.
- W3035247631 cites W2791574238 @default.
- W3035247631 cites W2794433482 @default.
- W3035247631 cites W2794841368 @default.
- W3035247631 cites W2811285924 @default.
- W3035247631 cites W2888179871 @default.
- W3035247631 cites W2896613037 @default.
- W3035247631 cites W2901906265 @default.
- W3035247631 cites W2905127877 @default.
- W3035247631 cites W2908621976 @default.
- W3035247631 cites W2916106717 @default.
- W3035247631 cites W2919115771 @default.
- W3035247631 cites W2922073063 @default.
- W3035247631 cites W2927261543 @default.
- W3035247631 cites W2946141567 @default.
- W3035247631 cites W2969642965 @default.
- W3035247631 cites W2990423348 @default.
- W3035247631 cites W3000026961 @default.
- W3035247631 cites W3017958344 @default.
- W3035247631 doi "https://doi.org/10.3390/s20123382" @default.
- W3035247631 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7349298" @default.
- W3035247631 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32549378" @default.
- W3035247631 hasPublicationYear "2020" @default.
- W3035247631 type Work @default.
- W3035247631 sameAs 3035247631 @default.
- W3035247631 citedByCount "42" @default.
- W3035247631 countsByYear W30352476312020 @default.
- W3035247631 countsByYear W30352476312021 @default.
- W3035247631 countsByYear W30352476312022 @default.
- W3035247631 countsByYear W30352476312023 @default.
- W3035247631 crossrefType "journal-article" @default.
- W3035247631 hasAuthorship W3035247631A5019288063 @default.
- W3035247631 hasAuthorship W3035247631A5028371557 @default.
- W3035247631 hasAuthorship W3035247631A5050548060 @default.
- W3035247631 hasAuthorship W3035247631A5064553812 @default.
- W3035247631 hasAuthorship W3035247631A5074092342 @default.
- W3035247631 hasAuthorship W3035247631A5085107699 @default.
- W3035247631 hasBestOaLocation W30352476311 @default.
- W3035247631 hasConcept C100776233 @default.
- W3035247631 hasConcept C108583219 @default.
- W3035247631 hasConcept C115961682 @default.
- W3035247631 hasConcept C119857082 @default.
- W3035247631 hasConcept C121684516 @default.
- W3035247631 hasConcept C126322002 @default.
- W3035247631 hasConcept C127413603 @default.
- W3035247631 hasConcept C154945302 @default.
- W3035247631 hasConcept C173534245 @default.
- W3035247631 hasConcept C18555067 @default.
- W3035247631 hasConcept C21442007 @default.
- W3035247631 hasConcept C41008148 @default.
- W3035247631 hasConcept C44507003 @default.
- W3035247631 hasConcept C66938386 @default.
- W3035247631 hasConcept C71924100 @default.
- W3035247631 hasConceptScore W3035247631C100776233 @default.
- W3035247631 hasConceptScore W3035247631C108583219 @default.
- W3035247631 hasConceptScore W3035247631C115961682 @default.
- W3035247631 hasConceptScore W3035247631C119857082 @default.
- W3035247631 hasConceptScore W3035247631C121684516 @default.
- W3035247631 hasConceptScore W3035247631C126322002 @default.
- W3035247631 hasConceptScore W3035247631C127413603 @default.
- W3035247631 hasConceptScore W3035247631C154945302 @default.
- W3035247631 hasConceptScore W3035247631C173534245 @default.
- W3035247631 hasConceptScore W3035247631C18555067 @default.
- W3035247631 hasConceptScore W3035247631C21442007 @default.
- W3035247631 hasConceptScore W3035247631C41008148 @default.
- W3035247631 hasConceptScore W3035247631C44507003 @default.
- W3035247631 hasConceptScore W3035247631C66938386 @default.
- W3035247631 hasConceptScore W3035247631C71924100 @default.
- W3035247631 hasFunder F4320309617 @default.
- W3035247631 hasIssue "12" @default.