Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035250394> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3035250394 abstract "Deep learning (DL) methods have achieved state-of-the-art performance in the task of single image rain removal. Most of current DL architectures, however, are still lack of sufficient interpretability and not fully integrated with physical structures inside general rain streaks. To this issue, in this paper, we propose a model-driven deep neural network for the task, with fully interpretable network structures. Specifically, based on the convolutional dictionary learning mechanism for representing rain, we propose a novel single image deraining model and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. Such a simple implementation scheme facilitates us to unfold it into a new deep network architecture, called rain convolutional dictionary network (RCDNet), with almost every network module one-to-one corresponding to each operation involved in the algorithm. By end-to-end training the proposed RCDNet, all the rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to its better deraining performance, especially in real scenarios. Comprehensive experiments substantiate the superiority of the proposed network, especially its well generality to diverse testing scenarios and good interpretability for all its modules, as compared with state-of-the-arts both visually and quantitatively. The source codes are available at url{https://github.com/hongwang01/RCDNet}." @default.
- W3035250394 created "2020-06-19" @default.
- W3035250394 creator A5022673825 @default.
- W3035250394 creator A5033020983 @default.
- W3035250394 creator A5038174569 @default.
- W3035250394 creator A5091017287 @default.
- W3035250394 date "2020-06-01" @default.
- W3035250394 modified "2023-10-11" @default.
- W3035250394 title "A Model-Driven Deep Neural Network for Single Image Rain Removal" @default.
- W3035250394 cites W1909316225 @default.
- W3035250394 cites W1965572510 @default.
- W3035250394 cites W1976056157 @default.
- W3035250394 cites W1999018898 @default.
- W3035250394 cites W2054604489 @default.
- W3035250394 cites W2084053957 @default.
- W3035250394 cites W2100556411 @default.
- W3035250394 cites W2113569611 @default.
- W3035250394 cites W2114770744 @default.
- W3035250394 cites W2119535410 @default.
- W3035250394 cites W2121396509 @default.
- W3035250394 cites W2122596619 @default.
- W3035250394 cites W2132103241 @default.
- W3035250394 cites W2133665775 @default.
- W3035250394 cites W2146837664 @default.
- W3035250394 cites W2146842127 @default.
- W3035250394 cites W2154621477 @default.
- W3035250394 cites W2163146621 @default.
- W3035250394 cites W2194775991 @default.
- W3035250394 cites W2466666260 @default.
- W3035250394 cites W2509784253 @default.
- W3035250394 cites W2617199345 @default.
- W3035250394 cites W2737207197 @default.
- W3035250394 cites W2740982616 @default.
- W3035250394 cites W2753548330 @default.
- W3035250394 cites W2777170053 @default.
- W3035250394 cites W2777241530 @default.
- W3035250394 cites W2780930362 @default.
- W3035250394 cites W2798401637 @default.
- W3035250394 cites W2798744505 @default.
- W3035250394 cites W2891269274 @default.
- W3035250394 cites W2906196996 @default.
- W3035250394 cites W2912435603 @default.
- W3035250394 cites W2913360047 @default.
- W3035250394 cites W2930755307 @default.
- W3035250394 cites W2963017889 @default.
- W3035250394 cites W2963284277 @default.
- W3035250394 cites W2963878020 @default.
- W3035250394 cites W2964212750 @default.
- W3035250394 cites W2967584026 @default.
- W3035250394 cites W2999659739 @default.
- W3035250394 cites W634211087 @default.
- W3035250394 doi "https://doi.org/10.1109/cvpr42600.2020.00317" @default.
- W3035250394 hasPublicationYear "2020" @default.
- W3035250394 type Work @default.
- W3035250394 sameAs 3035250394 @default.
- W3035250394 citedByCount "162" @default.
- W3035250394 countsByYear W30352503942020 @default.
- W3035250394 countsByYear W30352503942021 @default.
- W3035250394 countsByYear W30352503942022 @default.
- W3035250394 countsByYear W30352503942023 @default.
- W3035250394 crossrefType "proceedings-article" @default.
- W3035250394 hasAuthorship W3035250394A5022673825 @default.
- W3035250394 hasAuthorship W3035250394A5033020983 @default.
- W3035250394 hasAuthorship W3035250394A5038174569 @default.
- W3035250394 hasAuthorship W3035250394A5091017287 @default.
- W3035250394 hasBestOaLocation W30352503942 @default.
- W3035250394 hasConcept C115961682 @default.
- W3035250394 hasConcept C118365302 @default.
- W3035250394 hasConcept C153294291 @default.
- W3035250394 hasConcept C154945302 @default.
- W3035250394 hasConcept C205649164 @default.
- W3035250394 hasConcept C31972630 @default.
- W3035250394 hasConcept C41008148 @default.
- W3035250394 hasConcept C50644808 @default.
- W3035250394 hasConceptScore W3035250394C115961682 @default.
- W3035250394 hasConceptScore W3035250394C118365302 @default.
- W3035250394 hasConceptScore W3035250394C153294291 @default.
- W3035250394 hasConceptScore W3035250394C154945302 @default.
- W3035250394 hasConceptScore W3035250394C205649164 @default.
- W3035250394 hasConceptScore W3035250394C31972630 @default.
- W3035250394 hasConceptScore W3035250394C41008148 @default.
- W3035250394 hasConceptScore W3035250394C50644808 @default.
- W3035250394 hasLocation W30352503941 @default.
- W3035250394 hasLocation W30352503942 @default.
- W3035250394 hasOpenAccess W3035250394 @default.
- W3035250394 hasPrimaryLocation W30352503941 @default.
- W3035250394 hasRelatedWork W2005185696 @default.
- W3035250394 hasRelatedWork W2092957489 @default.
- W3035250394 hasRelatedWork W2130228941 @default.
- W3035250394 hasRelatedWork W2132132164 @default.
- W3035250394 hasRelatedWork W2161229648 @default.
- W3035250394 hasRelatedWork W2235753890 @default.
- W3035250394 hasRelatedWork W2314419244 @default.
- W3035250394 hasRelatedWork W2366116130 @default.
- W3035250394 hasRelatedWork W2889893736 @default.
- W3035250394 hasRelatedWork W2993674027 @default.
- W3035250394 isParatext "false" @default.
- W3035250394 isRetracted "false" @default.
- W3035250394 magId "3035250394" @default.
- W3035250394 workType "article" @default.