Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035251314> ?p ?o ?g. }
- W3035251314 endingPage "3239" @default.
- W3035251314 startingPage "3229" @default.
- W3035251314 abstract "This article describes the application of machine learning techniques to develop state-of-the-art detection and prediction system for spatiotemporal events found within remote sensing data; specifically, harmful algal bloom (HAB) events. We propose HAB detection system based on a ground truth historical record of HAB events, a novel spatiotemporal datacube representation of each event (from MODIS and GEBCO bathymetry data), and a variety of machine learning architectures utilizing the state-of-the-art spatial and temporal analysis methods based on convolutional neural networks, long short-term memory components together with random forest, and support vector machine classification methods. This work has focused specifically on the case study of the detection of Karenia brevis algae (K. brevis) HAB events within the coastal waters of Florida (over 2850 events from 2003 to 2018; an order of magnitude larger than any previous machine learning detection study into HAB events). The development of multimodal spatiotemporal datacube data structures and associated novel machine learning methods give a unique architecture for the automatic detection of environmental events. Specifically, when applied to the detection of HAB events, it gives a maximum detection accuracy of 91% and a Kappa coefficient of 0.81 for the Florida data considered. A HAB forecast system was also developed where a temporal subset of each datacube was used to predict the presence of a HAB in the future. This system was not significantly less accurate than the detection system being able to predict with 86% accuracy up to 8 d in the future." @default.
- W3035251314 created "2020-06-19" @default.
- W3035251314 creator A5014421453 @default.
- W3035251314 creator A5047802575 @default.
- W3035251314 creator A5048009053 @default.
- W3035251314 creator A5071761664 @default.
- W3035251314 date "2020-01-01" @default.
- W3035251314 modified "2023-10-01" @default.
- W3035251314 title "HABNet: Machine Learning, Remote Sensing-Based Detection of Harmful Algal Blooms" @default.
- W3035251314 cites W1156223243 @default.
- W3035251314 cites W1969753304 @default.
- W3035251314 cites W1975285091 @default.
- W3035251314 cites W1976471516 @default.
- W3035251314 cites W1977142525 @default.
- W3035251314 cites W1982440163 @default.
- W3035251314 cites W1984530617 @default.
- W3035251314 cites W1987038531 @default.
- W3035251314 cites W1996142029 @default.
- W3035251314 cites W2012818514 @default.
- W3035251314 cites W2013399283 @default.
- W3035251314 cites W2015235144 @default.
- W3035251314 cites W2017379056 @default.
- W3035251314 cites W2031845599 @default.
- W3035251314 cites W2033382583 @default.
- W3035251314 cites W2035651361 @default.
- W3035251314 cites W2040414821 @default.
- W3035251314 cites W2044500733 @default.
- W3035251314 cites W2056913856 @default.
- W3035251314 cites W2064675550 @default.
- W3035251314 cites W2075507576 @default.
- W3035251314 cites W2081816269 @default.
- W3035251314 cites W2084095435 @default.
- W3035251314 cites W2088280436 @default.
- W3035251314 cites W2088943641 @default.
- W3035251314 cites W2092179898 @default.
- W3035251314 cites W2097117768 @default.
- W3035251314 cites W2102605133 @default.
- W3035251314 cites W2105324842 @default.
- W3035251314 cites W2107575877 @default.
- W3035251314 cites W2107878631 @default.
- W3035251314 cites W2114830926 @default.
- W3035251314 cites W2114866007 @default.
- W3035251314 cites W2120061623 @default.
- W3035251314 cites W2133910563 @default.
- W3035251314 cites W2149876895 @default.
- W3035251314 cites W2155005486 @default.
- W3035251314 cites W2160474872 @default.
- W3035251314 cites W2171659470 @default.
- W3035251314 cites W2340335665 @default.
- W3035251314 cites W2618530766 @default.
- W3035251314 cites W2764259953 @default.
- W3035251314 cites W2886851716 @default.
- W3035251314 cites W2911964244 @default.
- W3035251314 cites W2914675999 @default.
- W3035251314 cites W2919115771 @default.
- W3035251314 cites W2951183276 @default.
- W3035251314 cites W2963316641 @default.
- W3035251314 cites W2963896595 @default.
- W3035251314 cites W2964081807 @default.
- W3035251314 cites W2972958645 @default.
- W3035251314 cites W4239510810 @default.
- W3035251314 cites W4297957988 @default.
- W3035251314 doi "https://doi.org/10.1109/jstars.2020.3001445" @default.
- W3035251314 hasPublicationYear "2020" @default.
- W3035251314 type Work @default.
- W3035251314 sameAs 3035251314 @default.
- W3035251314 citedByCount "39" @default.
- W3035251314 countsByYear W30352513142021 @default.
- W3035251314 countsByYear W30352513142022 @default.
- W3035251314 countsByYear W30352513142023 @default.
- W3035251314 crossrefType "journal-article" @default.
- W3035251314 hasAuthorship W3035251314A5014421453 @default.
- W3035251314 hasAuthorship W3035251314A5047802575 @default.
- W3035251314 hasAuthorship W3035251314A5048009053 @default.
- W3035251314 hasAuthorship W3035251314A5071761664 @default.
- W3035251314 hasBestOaLocation W30352513141 @default.
- W3035251314 hasConcept C108583219 @default.
- W3035251314 hasConcept C119857082 @default.
- W3035251314 hasConcept C12267149 @default.
- W3035251314 hasConcept C124101348 @default.
- W3035251314 hasConcept C146849305 @default.
- W3035251314 hasConcept C154945302 @default.
- W3035251314 hasConcept C163864269 @default.
- W3035251314 hasConcept C169258074 @default.
- W3035251314 hasConcept C205649164 @default.
- W3035251314 hasConcept C41008148 @default.
- W3035251314 hasConcept C62649853 @default.
- W3035251314 hasConcept C78168278 @default.
- W3035251314 hasConcept C81363708 @default.
- W3035251314 hasConceptScore W3035251314C108583219 @default.
- W3035251314 hasConceptScore W3035251314C119857082 @default.
- W3035251314 hasConceptScore W3035251314C12267149 @default.
- W3035251314 hasConceptScore W3035251314C124101348 @default.
- W3035251314 hasConceptScore W3035251314C146849305 @default.
- W3035251314 hasConceptScore W3035251314C154945302 @default.
- W3035251314 hasConceptScore W3035251314C163864269 @default.
- W3035251314 hasConceptScore W3035251314C169258074 @default.
- W3035251314 hasConceptScore W3035251314C205649164 @default.