Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035272952> ?p ?o ?g. }
- W3035272952 abstract "Background: Preterm birth is a major global health challenge, and the leading cause of death in children under 5 years old 1. It is also a key measure of a population's general health and nutritional status 2. Current clinical methods of estimating fetal gestational age are often inaccurate; between 20 and 30 weeks of gestation, even the best ultrasound estimates have uncertainties of 9 - 18 days 3 (full widths of 18 - 36 days). Accurate estimates of fetal gestational age and personalized predictions of future growth can substantially improve the management of individual pregnancies and population-level health. Methods: Using ultrasound-derived, fetal biometric data, we present a novel machine-learning approach to accurately estimate the gestational age, and predict the future growth trajectory of each fetus. The accuracy of the method is determined by reference to exactly known facts pertaining to each fetus, rather than the start of the mother's last menstrual cycle. The data stem from a sample of healthy, well-nourished participants in a large, multicenter, population-based study, INTERGROWTH-21st 4. The generalizability of the algorithm is demonstrated with data from a different and more heterogeneous population (INTERBIO-21st). No new facilities are needed beyond those routinely available in clinical settings. Findings: We estimate the fetal gestational age to within 3 days, using measurements made in a 10-week window spanning the second and third trimesters. Fetal gestational age can thus be estimated into the third trimester with an accuracy of 3 days, which is 300% to 500% better than possible with any previous algorithm 5. This will enable improved management of individual pregnancies. Personalized forecasts of future fetal growth are also, for the first time, available. Six-week forecasts of the growth trajectory for a given fetus are accurate to within 7 days. This will help identify at-risk fetuses significantly more accurately than currently possible. At population level, the much higher accuracy will improve fetal growth charts and population health assessments. Upon publication of this paper, the new algorithm can be used free of charge via a web portal. Interpretation: Modern machine-learning can circumvent longstanding limitations in determining fetal gestational age and future growth trajectory without recourse to often inaccurately-known information, such as the date of the mother's last menstrual period. Our approach can be extended to other types of fetal-related data, such as measurements of cell-free RNA (cfRNA) transcripts in maternal blood 6. More generally, the approach has the potential to provide accurate forecasts of disease progression from spot measurements of the relevant biomarkers.Funding Statement: Bill & Melinda Gates Foundation; US Department of Energy, Office of Science, Basic Energy Sciences award DE-SC0002164 (underlying dynamical techniques); US National Science Foundation awards STC 1231306 (underlying data analytical techniques) and 1551489 (underlying analytical models); and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC).Declaration of Interests: The authors stated: None reported.Ethics Approval Statement: The INTERGROWTH-21st 255 Project was approved by the Oxfordshire Research Ethics Committee “C” (reference: 08/H0606/139), and the research ethics committees of the individual institutions and the regional health authorities where the project was implemented. Written informed consent was obtained from all participants." @default.
- W3035272952 created "2020-06-19" @default.
- W3035272952 creator A5000395681 @default.
- W3035272952 creator A5002729731 @default.
- W3035272952 creator A5011698901 @default.
- W3035272952 creator A5012384700 @default.
- W3035272952 creator A5016474278 @default.
- W3035272952 creator A5026569087 @default.
- W3035272952 creator A5032280006 @default.
- W3035272952 creator A5033503418 @default.
- W3035272952 creator A5037762715 @default.
- W3035272952 creator A5041356823 @default.
- W3035272952 creator A5046278266 @default.
- W3035272952 creator A5047762193 @default.
- W3035272952 creator A5057451206 @default.
- W3035272952 creator A5059548610 @default.
- W3035272952 creator A5060156352 @default.
- W3035272952 creator A5063249955 @default.
- W3035272952 creator A5066393630 @default.
- W3035272952 creator A5066614193 @default.
- W3035272952 creator A5069940679 @default.
- W3035272952 creator A5071495604 @default.
- W3035272952 creator A5072131760 @default.
- W3035272952 creator A5075205226 @default.
- W3035272952 creator A5076996892 @default.
- W3035272952 creator A5086651382 @default.
- W3035272952 creator A5091351738 @default.
- W3035272952 date "2019-01-01" @default.
- W3035272952 modified "2023-10-03" @default.
- W3035272952 title "Using Machine Learning to Achieve Accurate Estimates of Fetal Gestational Age and Personalized Predictions of Fetal Growth" @default.
- W3035272952 doi "https://doi.org/10.2139/ssrn.3471997" @default.
- W3035272952 hasPublicationYear "2019" @default.
- W3035272952 type Work @default.
- W3035272952 sameAs 3035272952 @default.
- W3035272952 citedByCount "0" @default.
- W3035272952 crossrefType "journal-article" @default.
- W3035272952 hasAuthorship W3035272952A5000395681 @default.
- W3035272952 hasAuthorship W3035272952A5002729731 @default.
- W3035272952 hasAuthorship W3035272952A5011698901 @default.
- W3035272952 hasAuthorship W3035272952A5012384700 @default.
- W3035272952 hasAuthorship W3035272952A5016474278 @default.
- W3035272952 hasAuthorship W3035272952A5026569087 @default.
- W3035272952 hasAuthorship W3035272952A5032280006 @default.
- W3035272952 hasAuthorship W3035272952A5033503418 @default.
- W3035272952 hasAuthorship W3035272952A5037762715 @default.
- W3035272952 hasAuthorship W3035272952A5041356823 @default.
- W3035272952 hasAuthorship W3035272952A5046278266 @default.
- W3035272952 hasAuthorship W3035272952A5047762193 @default.
- W3035272952 hasAuthorship W3035272952A5057451206 @default.
- W3035272952 hasAuthorship W3035272952A5059548610 @default.
- W3035272952 hasAuthorship W3035272952A5060156352 @default.
- W3035272952 hasAuthorship W3035272952A5063249955 @default.
- W3035272952 hasAuthorship W3035272952A5066393630 @default.
- W3035272952 hasAuthorship W3035272952A5066614193 @default.
- W3035272952 hasAuthorship W3035272952A5069940679 @default.
- W3035272952 hasAuthorship W3035272952A5071495604 @default.
- W3035272952 hasAuthorship W3035272952A5072131760 @default.
- W3035272952 hasAuthorship W3035272952A5075205226 @default.
- W3035272952 hasAuthorship W3035272952A5076996892 @default.
- W3035272952 hasAuthorship W3035272952A5086651382 @default.
- W3035272952 hasAuthorship W3035272952A5091351738 @default.
- W3035272952 hasConcept C105795698 @default.
- W3035272952 hasConcept C131872663 @default.
- W3035272952 hasConcept C172680121 @default.
- W3035272952 hasConcept C27158222 @default.
- W3035272952 hasConcept C2778376644 @default.
- W3035272952 hasConcept C2779234561 @default.
- W3035272952 hasConcept C2908647359 @default.
- W3035272952 hasConcept C33923547 @default.
- W3035272952 hasConcept C46973012 @default.
- W3035272952 hasConcept C54355233 @default.
- W3035272952 hasConcept C71924100 @default.
- W3035272952 hasConcept C86803240 @default.
- W3035272952 hasConcept C99454951 @default.
- W3035272952 hasConceptScore W3035272952C105795698 @default.
- W3035272952 hasConceptScore W3035272952C131872663 @default.
- W3035272952 hasConceptScore W3035272952C172680121 @default.
- W3035272952 hasConceptScore W3035272952C27158222 @default.
- W3035272952 hasConceptScore W3035272952C2778376644 @default.
- W3035272952 hasConceptScore W3035272952C2779234561 @default.
- W3035272952 hasConceptScore W3035272952C2908647359 @default.
- W3035272952 hasConceptScore W3035272952C33923547 @default.
- W3035272952 hasConceptScore W3035272952C46973012 @default.
- W3035272952 hasConceptScore W3035272952C54355233 @default.
- W3035272952 hasConceptScore W3035272952C71924100 @default.
- W3035272952 hasConceptScore W3035272952C86803240 @default.
- W3035272952 hasConceptScore W3035272952C99454951 @default.
- W3035272952 hasLocation W30352729521 @default.
- W3035272952 hasOpenAccess W3035272952 @default.
- W3035272952 hasPrimaryLocation W30352729521 @default.
- W3035272952 hasRelatedWork W135971913 @default.
- W3035272952 hasRelatedWork W1987305737 @default.
- W3035272952 hasRelatedWork W1993263055 @default.
- W3035272952 hasRelatedWork W2052900307 @default.
- W3035272952 hasRelatedWork W2359828176 @default.
- W3035272952 hasRelatedWork W2375461302 @default.
- W3035272952 hasRelatedWork W2509726585 @default.
- W3035272952 hasRelatedWork W2590960723 @default.
- W3035272952 hasRelatedWork W3080828647 @default.
- W3035272952 hasRelatedWork W3161288867 @default.