Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035279969> ?p ?o ?g. }
- W3035279969 endingPage "313" @default.
- W3035279969 startingPage "294" @default.
- W3035279969 abstract "Due to the increasing importance of knowing the global solar radiation (GSR) amount incident on solar panels; short term data, such as hourly global solar radiation (HGSR), is essentially required to obtain more accurate and reliable power generation prediction. Nowadays, Machine Learning (ML) methods are becoming a huge trend for data forecasting. Therefore, in this paper, a comparison between Collares-Pereira & Rabl empirical model modified by Gueymard (CPRG) and ML methods for HGSR estimation in Eskişehir city in Turkey is conducted. Artificial Neural Network (ANN), Regression Tree (RT) and Support Vector Regression (SVR) are ML methods that are used to predict HGSR. Besides, hourly metrological and geographical parameters for the year 2014 are taken as inputs in the training models. The inputs are solar time, solar hour angle, Julian day number, daily GSR, altitude, longitude, latitude, hourly average humidity, hourly temperature and hourly pressure. To demonstrate these techniques, a comparison is implemented using MATLAB software with the help of existing toolboxes. Finally, this study proved that ML methods outperform the CPRG model and not to mention that they have far more accurate results. Although almost all ML models gave similar results, SVR was the best among them with a correlation coefficient of 0.979532 for the training set and 0.978244 for the testing set. In a nutshell, ML are successful methods that should be to be taken into consideration to perfectly estimate HGSR now and in the future in the field of solar renewable energy estimation." @default.
- W3035279969 created "2020-06-19" @default.
- W3035279969 creator A5043720840 @default.
- W3035279969 creator A5071501420 @default.
- W3035279969 date "2020-06-15" @default.
- W3035279969 modified "2023-09-27" @default.
- W3035279969 title "HOURLY GLOBAL SOLAR RADIATION ESTIMATION BASED ON MACHINE LEARNING METHODS IN ESKISEHIR" @default.
- W3035279969 cites W1630551702 @default.
- W3035279969 cites W1895707564 @default.
- W3035279969 cites W1978971538 @default.
- W3035279969 cites W1994296426 @default.
- W3035279969 cites W2006905720 @default.
- W3035279969 cites W2021383519 @default.
- W3035279969 cites W2028281391 @default.
- W3035279969 cites W2030216404 @default.
- W3035279969 cites W2044828456 @default.
- W3035279969 cites W2046890513 @default.
- W3035279969 cites W2054032642 @default.
- W3035279969 cites W2054533615 @default.
- W3035279969 cites W2056961857 @default.
- W3035279969 cites W2071208382 @default.
- W3035279969 cites W2076256832 @default.
- W3035279969 cites W2076453779 @default.
- W3035279969 cites W2076458415 @default.
- W3035279969 cites W2083620425 @default.
- W3035279969 cites W2134829952 @default.
- W3035279969 cites W2141365159 @default.
- W3035279969 cites W2156909104 @default.
- W3035279969 cites W2159175035 @default.
- W3035279969 cites W2169922949 @default.
- W3035279969 cites W2299622862 @default.
- W3035279969 cites W2569349941 @default.
- W3035279969 cites W2581170377 @default.
- W3035279969 cites W2615529263 @default.
- W3035279969 cites W2734900778 @default.
- W3035279969 cites W2773038010 @default.
- W3035279969 cites W2781426785 @default.
- W3035279969 cites W2806583606 @default.
- W3035279969 cites W2886807638 @default.
- W3035279969 cites W2911956241 @default.
- W3035279969 cites W4247716355 @default.
- W3035279969 cites W4251817184 @default.
- W3035279969 cites W990800684 @default.
- W3035279969 doi "https://doi.org/10.18038/estubtda.650497" @default.
- W3035279969 hasPublicationYear "2020" @default.
- W3035279969 type Work @default.
- W3035279969 sameAs 3035279969 @default.
- W3035279969 citedByCount "4" @default.
- W3035279969 countsByYear W30352799692021 @default.
- W3035279969 countsByYear W30352799692022 @default.
- W3035279969 countsByYear W30352799692023 @default.
- W3035279969 crossrefType "journal-article" @default.
- W3035279969 hasAuthorship W3035279969A5043720840 @default.
- W3035279969 hasAuthorship W3035279969A5071501420 @default.
- W3035279969 hasBestOaLocation W30352799691 @default.
- W3035279969 hasConcept C119599485 @default.
- W3035279969 hasConcept C119857082 @default.
- W3035279969 hasConcept C122523270 @default.
- W3035279969 hasConcept C12267149 @default.
- W3035279969 hasConcept C127413603 @default.
- W3035279969 hasConcept C13280743 @default.
- W3035279969 hasConcept C133199616 @default.
- W3035279969 hasConcept C153294291 @default.
- W3035279969 hasConcept C158960510 @default.
- W3035279969 hasConcept C188573790 @default.
- W3035279969 hasConcept C197529216 @default.
- W3035279969 hasConcept C205649164 @default.
- W3035279969 hasConcept C2780554747 @default.
- W3035279969 hasConcept C39432304 @default.
- W3035279969 hasConcept C41008148 @default.
- W3035279969 hasConcept C44154836 @default.
- W3035279969 hasConcept C50644808 @default.
- W3035279969 hasConceptScore W3035279969C119599485 @default.
- W3035279969 hasConceptScore W3035279969C119857082 @default.
- W3035279969 hasConceptScore W3035279969C122523270 @default.
- W3035279969 hasConceptScore W3035279969C12267149 @default.
- W3035279969 hasConceptScore W3035279969C127413603 @default.
- W3035279969 hasConceptScore W3035279969C13280743 @default.
- W3035279969 hasConceptScore W3035279969C133199616 @default.
- W3035279969 hasConceptScore W3035279969C153294291 @default.
- W3035279969 hasConceptScore W3035279969C158960510 @default.
- W3035279969 hasConceptScore W3035279969C188573790 @default.
- W3035279969 hasConceptScore W3035279969C197529216 @default.
- W3035279969 hasConceptScore W3035279969C205649164 @default.
- W3035279969 hasConceptScore W3035279969C2780554747 @default.
- W3035279969 hasConceptScore W3035279969C39432304 @default.
- W3035279969 hasConceptScore W3035279969C41008148 @default.
- W3035279969 hasConceptScore W3035279969C44154836 @default.
- W3035279969 hasConceptScore W3035279969C50644808 @default.
- W3035279969 hasIssue "2" @default.
- W3035279969 hasLocation W30352799691 @default.
- W3035279969 hasLocation W30352799692 @default.
- W3035279969 hasOpenAccess W3035279969 @default.
- W3035279969 hasPrimaryLocation W30352799691 @default.
- W3035279969 hasRelatedWork W1569164921 @default.
- W3035279969 hasRelatedWork W1982997546 @default.
- W3035279969 hasRelatedWork W1985531835 @default.
- W3035279969 hasRelatedWork W2016223000 @default.