Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035290561> ?p ?o ?g. }
- W3035290561 abstract "Abstract Objective Social media can be an effective but challenging resource for conducting close-to-real-time assessments of consumers’ perceptions about health services. Our objective was to develop and evaluate an automatic pipeline, involving natural language processing and machine learning, for automatically characterizing user-posted Twitter data about Medicaid. Material and Methods We collected Twitter data via the public API using Medicaid-related keywords (Corpus-1), and the website’s search option using agency-specific handles (Corpus-2). We manually labeled a sample of tweets into five pre-determined categories or other , and artificially increased the number of training posts from specific low-frequency categories. We trained and evaluated several supervised learning algorithms using manually-labeled data, and applied the best-performing classifier to collected tweets for post-classification analyses assessing the utility of our methods. Results We collected 628,411 and 27,377 tweets for Corpus-1 and -2, respectively. We manually annotated 9,571 (Corpus-1: 8,180; Corpus-2: 1,391) tweets, using 7,923 (82.8%) for training and 1,648 (17.2%) for evaluation. A BERT-based (bidirectional encoder representations from transformers) classifier obtained the highest accuracies (83.9%, Corpus-1; 86.4%, Corpus-2), outperforming the second-best classifier (SVMs: 79.6%; 76.4%). Post-classification analyses revealed differing inter-corpora distributions of tweet categories, with political (63%) and consumer-feedback (43%) tweets being most frequent for Corpus-1 and -2, respectively. Discussion and Conclusion The broad and variable content of Medicaid-related tweets necessitates automatic categorization to identify topic-relevant posts. Our proposed pipeline presents a feasible solution for automatic categorization, and can be deployed/generalized for health service programs other than Medicaid. Annotated data and methods are available for future studies (LINK_TO_BE_AVAILABLE)." @default.
- W3035290561 created "2020-06-19" @default.
- W3035290561 creator A5004858670 @default.
- W3035290561 creator A5034970066 @default.
- W3035290561 creator A5042233690 @default.
- W3035290561 creator A5047307870 @default.
- W3035290561 creator A5055970007 @default.
- W3035290561 creator A5086087170 @default.
- W3035290561 date "2020-06-13" @default.
- W3035290561 modified "2023-09-23" @default.
- W3035290561 title "Developing an automatic pipeline for analyzing chatter about health services from social media: A case study for Medicaid" @default.
- W3035290561 cites W1015675232 @default.
- W3035290561 cites W1955303603 @default.
- W3035290561 cites W1993040486 @default.
- W3035290561 cites W2016443085 @default.
- W3035290561 cites W2031948155 @default.
- W3035290561 cites W2033640210 @default.
- W3035290561 cites W2037789405 @default.
- W3035290561 cites W2053802957 @default.
- W3035290561 cites W2064222935 @default.
- W3035290561 cites W2064675550 @default.
- W3035290561 cites W2071478164 @default.
- W3035290561 cites W2122111042 @default.
- W3035290561 cites W2131774270 @default.
- W3035290561 cites W2147326145 @default.
- W3035290561 cites W2153635508 @default.
- W3035290561 cites W2160660844 @default.
- W3035290561 cites W2171469118 @default.
- W3035290561 cites W2224826979 @default.
- W3035290561 cites W2250539671 @default.
- W3035290561 cites W2315671882 @default.
- W3035290561 cites W2622300662 @default.
- W3035290561 cites W2743879072 @default.
- W3035290561 cites W2914237999 @default.
- W3035290561 cites W2946191173 @default.
- W3035290561 cites W2963353710 @default.
- W3035290561 cites W3141714916 @default.
- W3035290561 cites W4211186029 @default.
- W3035290561 cites W4243014727 @default.
- W3035290561 cites W824559114 @default.
- W3035290561 doi "https://doi.org/10.1101/2020.06.12.20129593" @default.
- W3035290561 hasPublicationYear "2020" @default.
- W3035290561 type Work @default.
- W3035290561 sameAs 3035290561 @default.
- W3035290561 citedByCount "1" @default.
- W3035290561 countsByYear W30352905612021 @default.
- W3035290561 crossrefType "posted-content" @default.
- W3035290561 hasAuthorship W3035290561A5004858670 @default.
- W3035290561 hasAuthorship W3035290561A5034970066 @default.
- W3035290561 hasAuthorship W3035290561A5042233690 @default.
- W3035290561 hasAuthorship W3035290561A5047307870 @default.
- W3035290561 hasAuthorship W3035290561A5055970007 @default.
- W3035290561 hasAuthorship W3035290561A5086087170 @default.
- W3035290561 hasBestOaLocation W30352905611 @default.
- W3035290561 hasConcept C119857082 @default.
- W3035290561 hasConcept C12267149 @default.
- W3035290561 hasConcept C136764020 @default.
- W3035290561 hasConcept C154945302 @default.
- W3035290561 hasConcept C160735492 @default.
- W3035290561 hasConcept C162324750 @default.
- W3035290561 hasConcept C199360897 @default.
- W3035290561 hasConcept C204321447 @default.
- W3035290561 hasConcept C2776534028 @default.
- W3035290561 hasConcept C41008148 @default.
- W3035290561 hasConcept C43521106 @default.
- W3035290561 hasConcept C50522688 @default.
- W3035290561 hasConcept C518677369 @default.
- W3035290561 hasConcept C94124525 @default.
- W3035290561 hasConcept C95623464 @default.
- W3035290561 hasConceptScore W3035290561C119857082 @default.
- W3035290561 hasConceptScore W3035290561C12267149 @default.
- W3035290561 hasConceptScore W3035290561C136764020 @default.
- W3035290561 hasConceptScore W3035290561C154945302 @default.
- W3035290561 hasConceptScore W3035290561C160735492 @default.
- W3035290561 hasConceptScore W3035290561C162324750 @default.
- W3035290561 hasConceptScore W3035290561C199360897 @default.
- W3035290561 hasConceptScore W3035290561C204321447 @default.
- W3035290561 hasConceptScore W3035290561C2776534028 @default.
- W3035290561 hasConceptScore W3035290561C41008148 @default.
- W3035290561 hasConceptScore W3035290561C43521106 @default.
- W3035290561 hasConceptScore W3035290561C50522688 @default.
- W3035290561 hasConceptScore W3035290561C518677369 @default.
- W3035290561 hasConceptScore W3035290561C94124525 @default.
- W3035290561 hasConceptScore W3035290561C95623464 @default.
- W3035290561 hasLocation W30352905611 @default.
- W3035290561 hasOpenAccess W3035290561 @default.
- W3035290561 hasPrimaryLocation W30352905611 @default.
- W3035290561 hasRelatedWork W10648265 @default.
- W3035290561 hasRelatedWork W13034104 @default.
- W3035290561 hasRelatedWork W5006566 @default.
- W3035290561 hasRelatedWork W5641948 @default.
- W3035290561 hasRelatedWork W728297 @default.
- W3035290561 hasRelatedWork W7655147 @default.
- W3035290561 hasRelatedWork W7830544 @default.
- W3035290561 hasRelatedWork W8407316 @default.
- W3035290561 hasRelatedWork W9292421 @default.
- W3035290561 hasRelatedWork W9778490 @default.
- W3035290561 isParatext "false" @default.
- W3035290561 isRetracted "false" @default.
- W3035290561 magId "3035290561" @default.