Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035313462> ?p ?o ?g. }
- W3035313462 abstract "Unsupervised machine translation (MT) has recently achieved impressive results with monolingual corpora only. However, it is still challenging to associate source-target sentences in the latent space. As people speak different languages biologically share similar visual systems, the potential of achieving better alignment through visual content is promising yet under-explored in unsupervised multimodal MT (MMT). In this paper, we investigate how to utilize visual content for disambiguation and promoting latent space alignment in unsupervised MMT. Our model employs multimodal back-translation and features pseudo visual pivoting in which we learn a shared multilingual visual-semantic embedding space and incorporate visually-pivoted captioning as additional weak supervision. The experimental results on the widely used Multi30K dataset show that the proposed model significantly improves over the state-of-the-art methods and generalizes well when images are not available at the testing time." @default.
- W3035313462 created "2020-06-19" @default.
- W3035313462 creator A5034967388 @default.
- W3035313462 creator A5062546146 @default.
- W3035313462 creator A5063149046 @default.
- W3035313462 creator A5085263462 @default.
- W3035313462 date "2020-01-01" @default.
- W3035313462 modified "2023-09-23" @default.
- W3035313462 title "Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting" @default.
- W3035313462 cites W1523385540 @default.
- W3035313462 cites W1527575280 @default.
- W3035313462 cites W1753482797 @default.
- W3035313462 cites W1861492603 @default.
- W3035313462 cites W2124807415 @default.
- W3035313462 cites W2130942839 @default.
- W3035313462 cites W2194775991 @default.
- W3035313462 cites W2509282593 @default.
- W3035313462 cites W2513263213 @default.
- W3035313462 cites W2546938941 @default.
- W3035313462 cites W2548228487 @default.
- W3035313462 cites W2550821151 @default.
- W3035313462 cites W2581101319 @default.
- W3035313462 cites W2610245951 @default.
- W3035313462 cites W2613718673 @default.
- W3035313462 cites W2745461083 @default.
- W3035313462 cites W2808084195 @default.
- W3035313462 cites W2888070626 @default.
- W3035313462 cites W2891555348 @default.
- W3035313462 cites W2944815030 @default.
- W3035313462 cites W2950162424 @default.
- W3035313462 cites W2962784628 @default.
- W3035313462 cites W2962793481 @default.
- W3035313462 cites W2962824887 @default.
- W3035313462 cites W2962964995 @default.
- W3035313462 cites W2962968835 @default.
- W3035313462 cites W2963084599 @default.
- W3035313462 cites W2963216553 @default.
- W3035313462 cites W2963341956 @default.
- W3035313462 cites W2963360627 @default.
- W3035313462 cites W2963386218 @default.
- W3035313462 cites W2963403868 @default.
- W3035313462 cites W2963407669 @default.
- W3035313462 cites W2963496089 @default.
- W3035313462 cites W2963602293 @default.
- W3035313462 cites W2963988211 @default.
- W3035313462 cites W2964007535 @default.
- W3035313462 cites W2964121744 @default.
- W3035313462 cites W2964192290 @default.
- W3035313462 cites W2964308564 @default.
- W3035313462 cites W2970632400 @default.
- W3035313462 cites W2980216782 @default.
- W3035313462 cites W2981473723 @default.
- W3035313462 doi "https://doi.org/10.18653/v1/2020.acl-main.731" @default.
- W3035313462 hasPublicationYear "2020" @default.
- W3035313462 type Work @default.
- W3035313462 sameAs 3035313462 @default.
- W3035313462 citedByCount "20" @default.
- W3035313462 countsByYear W30353134622020 @default.
- W3035313462 countsByYear W30353134622021 @default.
- W3035313462 countsByYear W30353134622022 @default.
- W3035313462 countsByYear W30353134622023 @default.
- W3035313462 crossrefType "proceedings-article" @default.
- W3035313462 hasAuthorship W3035313462A5034967388 @default.
- W3035313462 hasAuthorship W3035313462A5062546146 @default.
- W3035313462 hasAuthorship W3035313462A5063149046 @default.
- W3035313462 hasAuthorship W3035313462A5085263462 @default.
- W3035313462 hasBestOaLocation W30353134621 @default.
- W3035313462 hasConcept C104317684 @default.
- W3035313462 hasConcept C105580179 @default.
- W3035313462 hasConcept C111919701 @default.
- W3035313462 hasConcept C115961682 @default.
- W3035313462 hasConcept C119857082 @default.
- W3035313462 hasConcept C149364088 @default.
- W3035313462 hasConcept C153180895 @default.
- W3035313462 hasConcept C154945302 @default.
- W3035313462 hasConcept C157657479 @default.
- W3035313462 hasConcept C169760540 @default.
- W3035313462 hasConcept C185592680 @default.
- W3035313462 hasConcept C203005215 @default.
- W3035313462 hasConcept C204321447 @default.
- W3035313462 hasConcept C207363949 @default.
- W3035313462 hasConcept C26760741 @default.
- W3035313462 hasConcept C2778572836 @default.
- W3035313462 hasConcept C36464697 @default.
- W3035313462 hasConcept C41008148 @default.
- W3035313462 hasConcept C41608201 @default.
- W3035313462 hasConcept C55493867 @default.
- W3035313462 hasConcept C8038995 @default.
- W3035313462 hasConcept C86803240 @default.
- W3035313462 hasConceptScore W3035313462C104317684 @default.
- W3035313462 hasConceptScore W3035313462C105580179 @default.
- W3035313462 hasConceptScore W3035313462C111919701 @default.
- W3035313462 hasConceptScore W3035313462C115961682 @default.
- W3035313462 hasConceptScore W3035313462C119857082 @default.
- W3035313462 hasConceptScore W3035313462C149364088 @default.
- W3035313462 hasConceptScore W3035313462C153180895 @default.
- W3035313462 hasConceptScore W3035313462C154945302 @default.
- W3035313462 hasConceptScore W3035313462C157657479 @default.
- W3035313462 hasConceptScore W3035313462C169760540 @default.
- W3035313462 hasConceptScore W3035313462C185592680 @default.