Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035315091> ?p ?o ?g. }
- W3035315091 abstract "A number of researchers have recently questioned the necessity of increasingly complex neural network (NN) architectures. In particular, several recent papers have shown that simpler, properly tuned models are at least competitive across several NLP tasks. In this work, we show that this is also the case for text generation from structured and unstructured data. We consider neural table-to-text generation and neural question generation (NQG) tasks for text generation from structured and unstructured data, respectively. Table-to-text generation aims to generate a description based on a given table, and NQG is the task of generating a question from a given passage where the generated question can be answered by a certain sub-span of the passage using NN models. Experimental results demonstrate that a basic attention-based seq2seq model trained with the exponential moving average technique achieves the state of the art in both tasks. Code is available at https://github.com/h-shahidi/2birds-gen." @default.
- W3035315091 created "2020-06-19" @default.
- W3035315091 creator A5021384155 @default.
- W3035315091 creator A5041231213 @default.
- W3035315091 creator A5082997975 @default.
- W3035315091 date "2020-01-01" @default.
- W3035315091 modified "2023-09-25" @default.
- W3035315091 title "Two Birds, One Stone: A Simple, Unified Model for Text Generation from Structured and Unstructured Data" @default.
- W3035315091 cites W1531374185 @default.
- W3035315091 cites W2086161653 @default.
- W3035315091 cites W2101105183 @default.
- W3035315091 cites W2123301721 @default.
- W3035315091 cites W2141440284 @default.
- W3035315091 cites W2154652894 @default.
- W3035315091 cites W2156779765 @default.
- W3035315091 cites W2183341477 @default.
- W3035315091 cites W2250539671 @default.
- W3035315091 cites W2275056699 @default.
- W3035315091 cites W2606333299 @default.
- W3035315091 cites W2624022918 @default.
- W3035315091 cites W2757978590 @default.
- W3035315091 cites W2789204155 @default.
- W3035315091 cites W2799424953 @default.
- W3035315091 cites W2803595284 @default.
- W3035315091 cites W2804292122 @default.
- W3035315091 cites W2807750936 @default.
- W3035315091 cites W2881747041 @default.
- W3035315091 cites W2886505372 @default.
- W3035315091 cites W2889670144 @default.
- W3035315091 cites W2890166583 @default.
- W3035315091 cites W2891946694 @default.
- W3035315091 cites W2911857455 @default.
- W3035315091 cites W2945542139 @default.
- W3035315091 cites W2962717047 @default.
- W3035315091 cites W2962832505 @default.
- W3035315091 cites W2963091658 @default.
- W3035315091 cites W2963351776 @default.
- W3035315091 cites W2963541420 @default.
- W3035315091 cites W2963748441 @default.
- W3035315091 cites W2963748792 @default.
- W3035315091 cites W2963897632 @default.
- W3035315091 cites W2964121744 @default.
- W3035315091 cites W2964165364 @default.
- W3035315091 cites W2964308564 @default.
- W3035315091 doi "https://doi.org/10.18653/v1/2020.acl-main.355" @default.
- W3035315091 hasPublicationYear "2020" @default.
- W3035315091 type Work @default.
- W3035315091 sameAs 3035315091 @default.
- W3035315091 citedByCount "6" @default.
- W3035315091 countsByYear W30353150912020 @default.
- W3035315091 countsByYear W30353150912021 @default.
- W3035315091 countsByYear W30353150912023 @default.
- W3035315091 crossrefType "proceedings-article" @default.
- W3035315091 hasAuthorship W3035315091A5021384155 @default.
- W3035315091 hasAuthorship W3035315091A5041231213 @default.
- W3035315091 hasAuthorship W3035315091A5082997975 @default.
- W3035315091 hasBestOaLocation W30353150911 @default.
- W3035315091 hasConcept C111472728 @default.
- W3035315091 hasConcept C119857082 @default.
- W3035315091 hasConcept C124101348 @default.
- W3035315091 hasConcept C138885662 @default.
- W3035315091 hasConcept C154945302 @default.
- W3035315091 hasConcept C162324750 @default.
- W3035315091 hasConcept C177264268 @default.
- W3035315091 hasConcept C187736073 @default.
- W3035315091 hasConcept C199360897 @default.
- W3035315091 hasConcept C204321447 @default.
- W3035315091 hasConcept C2776760102 @default.
- W3035315091 hasConcept C2780451532 @default.
- W3035315091 hasConcept C2780586882 @default.
- W3035315091 hasConcept C2781252014 @default.
- W3035315091 hasConcept C2985684807 @default.
- W3035315091 hasConcept C41008148 @default.
- W3035315091 hasConcept C45235069 @default.
- W3035315091 hasConcept C50644808 @default.
- W3035315091 hasConcept C75684735 @default.
- W3035315091 hasConceptScore W3035315091C111472728 @default.
- W3035315091 hasConceptScore W3035315091C119857082 @default.
- W3035315091 hasConceptScore W3035315091C124101348 @default.
- W3035315091 hasConceptScore W3035315091C138885662 @default.
- W3035315091 hasConceptScore W3035315091C154945302 @default.
- W3035315091 hasConceptScore W3035315091C162324750 @default.
- W3035315091 hasConceptScore W3035315091C177264268 @default.
- W3035315091 hasConceptScore W3035315091C187736073 @default.
- W3035315091 hasConceptScore W3035315091C199360897 @default.
- W3035315091 hasConceptScore W3035315091C204321447 @default.
- W3035315091 hasConceptScore W3035315091C2776760102 @default.
- W3035315091 hasConceptScore W3035315091C2780451532 @default.
- W3035315091 hasConceptScore W3035315091C2780586882 @default.
- W3035315091 hasConceptScore W3035315091C2781252014 @default.
- W3035315091 hasConceptScore W3035315091C2985684807 @default.
- W3035315091 hasConceptScore W3035315091C41008148 @default.
- W3035315091 hasConceptScore W3035315091C45235069 @default.
- W3035315091 hasConceptScore W3035315091C50644808 @default.
- W3035315091 hasConceptScore W3035315091C75684735 @default.
- W3035315091 hasLocation W30353150911 @default.
- W3035315091 hasLocation W30353150912 @default.
- W3035315091 hasOpenAccess W3035315091 @default.
- W3035315091 hasPrimaryLocation W30353150911 @default.
- W3035315091 hasRelatedWork W2056254149 @default.