Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035315707> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3035315707 endingPage "722" @default.
- W3035315707 startingPage "719" @default.
- W3035315707 abstract "BioanalysisVol. 12, No. 11 EditorialMetabolomics and doping analysis: promises and pitfallsFrancesco Botrè, Costas Georgakopoulos & Mohamed A ElrayessFrancesco Botrè *Author for correspondence: Tel.: +39 06 87973500; Fax: +39 06 8078971; E-mail Address: francesco.botre@uniroma1.ithttps://orcid.org/0000-0001-5296-8126Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, ItalySearch for more papers by this author, Costas Georgakopoulos https://orcid.org/0000-0001-5744-1243Anti-Doping Laboratory Qatar, Doha, QatarSearch for more papers by this author & Mohamed A Elrayess https://orcid.org/0000-0003-3803-4604Biomedical Research Center (BRC), Qatar University, Doha, QatarSearch for more papers by this authorPublished Online:12 Jun 2020https://doi.org/10.4155/bio-2020-0137AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: athlete biological passportdoping analysismarkers of effectmarkers of exposuremetabolomicsReferences1. Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics 2, 155–168 (2001).Crossref, Medline, CAS, Google Scholar2. Ljungqvist A. Brief history of anti-doping. In: Med Sport Sci. Acute Topics in Anti-Doping. Rabin OPitsiladis Y (Eds). vol 62, Karger, Basel, Switzerland, 1–10 (2017). https://www.karger.com/Book/Home/275105Crossref, Google Scholar3. The World Anti-Doping Agency. The world anti-doping code international standard – prohibited list January 2020. (2019). http://www.wada-ama.org/sites/default/files/wada_2020_english_prohibited_list_0.pdfGoogle Scholar4. Botrè F, de la Torre X, Donati F, Mazzarino M. Narrowing the gap between the number of athletes who dope and the number of athletes who are caught: scientific advances that increase the efficacy of antidoping tests. Br. J. Sports Med. 48, 833–836 (2014).Crossref, Medline, Google Scholar5. Saugy M, Lundby C, Robinson N. Monitoring of biological markers indicative of doping: the athlete biological passport. Br. J. Sports Med. 48, 827–832 (2014).Crossref, Medline, Google Scholar6. Reichel C. OMICS-strategies and methods in the fight against doping. Forensic Sci. Int. 213, 20–34 (2011).Crossref, Medline, CAS, Google Scholar7. Rodriguez-Morato J, Pozo OJ, Marcos J. Targeting human urinary metabolome by LC–MS/MS: a review. Bioanalysis 10, 489–516 (2018).Link, CAS, Google Scholar8. Narduzzi L, Dervilly G, Audran M, Le Bizec B, Buisson C. A role for metabolomics in the antidoping toolbox? Drug Test. Anal. (2020). https://doi.org/10.1002/dta.2788Crossref, Google Scholar9. Ueda T, Tozaki T, Nozawa S, Kinoshita K, Gawahara H. Identification of metabolomic changes in horse plasma after racing by liquid chromatography-high resolution mass spectrometry as a strategy for doping testing. J. Equine Sci. 30, 55–61 (2019).Crossref, Medline, CAS, Google Scholar10. Hernández-Mesa M, Monteau F, Le Bizec B, Dervilly-Pinel G. Potential of ion mobility-mass spectrometry for both targeted and non-targeted analysis of Phase II steroid metabolites in urine. Anal. Chim. Acta doi:10.1016/j.acax.2019.100006 (2019).Google Scholar11. Raro M, Ibáñez M, Gil R et al. Untargeted metabolomics in doping control: detection of new markers of testosterone misuse by ultrahigh performance liquid chromatography coupled to high-resolution mass spectrometry. Anal. Chem. 87, 8373–8380 (2015).Crossref, Medline, CAS, Google Scholar12. Palermo A, Botrè F, de la Torre X, Zamboni N. Non-targeted LC-MS based metabolomics analysis of the urinary steroidal profile. Anal. Chim. Acta 964, 112–122 (2017).Crossref, Medline, CAS, Google Scholar13. Ponzetto F, Boccard J, Baume N et al. High-resolution mass spectrometry as an alternative detection method to tandem mass spectrometry for the analysis of endogenous steroids in serum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1052, 34–42 (2017).Crossref, Medline, CAS, Google Scholar14. Ponzetto F, Boccard J, Nicoli R, Kuuranne T, Saugy M, Rudaz S. Steroidomics for highlighting novel serum biomarkers of testosterone doping. Bioanalysis 11, 1171–1188 (2019).Link, CAS, Google Scholar15. Wang V, Caldwell R, Cowan DA, Legido-Quigley C. LC-MS-based metabolomics discovers purine endogenous associations with low-dose salbutamol in urine collected for antidoping tests. Anal. Chem. 88, 2243–2249 (2016).Crossref, Medline, CAS, Google Scholar16. Kiss A, Lucio M, Fildier A, Buisson C, Schmitt-Kopplin P, Cren-Olivé C. Doping control using high and ultra-high resolution mass spectrometry based non-targeted metabolomics:a case study of salbutamol and budesonide abuse. PLoS ONE doi:10.1371/journal.pone.0074584 (2013).Crossref, Google Scholar17. Narduzzi L, Dervilly G, Marchand A, Audran M, Le Bizec B, Buisson C. Applying metabolomics to detect growth hormone administration in athletes: proof of concept. Drug Test. Anal. doi:10.1002/dta.2798 (2020) (Epub ahead of print).Crossref, Google Scholar18. Al-Khelaifi F, Diboun I, Donati F et al. A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines. Sports Med. Open https://doi.org/doi:10.1186/s40798-017-0114-z (2018).Crossref, Medline, Google Scholar19. Al-Khelaifi F, Diboun I, Donati F et al. Metabolomics profiling of xenobiotics in elite athletes: relevance to supplement consumption. J. Int. Soc. Sports Nutr. doi: 10.1186/s12970-018-0254-7 (2018).Crossref, Medline, Google Scholar20. Al-Khelaifi F, Donati F, Botrè F et al. Metabolic profiling of elite athletes with different cardiovascular demand. Scand. J. Med. Sci. Sports 29(7), 933–943 (2019).Medline, Google Scholar21. Al-Khelaifi F, Diboun I, Donati F et al. Metabolic GWAS of elite athletes reveals novel genetically-influenced metabolites associated with athletic performance. Sci. Rep. https://doi.org/doi:10.1038/s41598-019-56496-7 (2019).Crossref, Medline, Google ScholarFiguresReferencesRelatedDetailsCited ByMass spectrometry: A key tool in anti‐doping1 December 2022 | SEPARATION SCIENCE PLUS, Vol. 6, No. 2Future opportunities for the Athlete Biological Passport2 November 2022 | Frontiers in Sports and Active Living, Vol. 4Comparing metabolic profiles between female endurance athletes and non-athletes reveals differences in androgen and corticosteroid levelsThe Journal of Steroid Biochemistry and Molecular Biology, Vol. 219Supercritical fluid chromatography mass spectrometry as an emerging technique in doping control analysisTrAC Trends in Analytical Chemistry, Vol. 147Metabolomics workflow as a driven tool for rapid detection of metabolites in doping analysis. Development and validation25 November 2021 | Rapid Communications in Mass Spectrometry, Vol. 36, No. 2Scopes of Bioanalytical Chromatography–Mass Spectrometry24 September 2021 | Journal of Analytical Chemistry, Vol. 76, No. 10Coupling Complete Blood Count and Steroidomics to Track Low Doses Administration of Recombinant Growth Hormone: An Anti-Doping Perspective10 June 2021 | Frontiers in Molecular Biosciences, Vol. 8Antidoping analysis: a special focusDavid A Cowan8 July 2020 | Bioanalysis, Vol. 12, No. 11 Vol. 12, No. 11 Follow us on social media for the latest updates Metrics Downloaded 126 times History Received 4 May 2020 Accepted 14 May 2020 Published online 12 June 2020 Published in print June 2020 Information© 2020 Newlands PressKeywordsathlete biological passportdoping analysismarkers of effectmarkers of exposuremetabolomicsFinancial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W3035315707 created "2020-06-19" @default.
- W3035315707 creator A5056478743 @default.
- W3035315707 creator A5075169564 @default.
- W3035315707 creator A5081994437 @default.
- W3035315707 date "2020-06-01" @default.
- W3035315707 modified "2023-10-14" @default.
- W3035315707 title "Metabolomics and doping analysis: promises and pitfalls" @default.
- W3035315707 cites W1041748778 @default.
- W3035315707 cites W1971565035 @default.
- W3035315707 cites W2014837568 @default.
- W3035315707 cites W2051735889 @default.
- W3035315707 cites W2120714068 @default.
- W3035315707 cites W2166427144 @default.
- W3035315707 cites W2237400835 @default.
- W3035315707 cites W2583346676 @default.
- W3035315707 cites W2595839873 @default.
- W3035315707 cites W2621083217 @default.
- W3035315707 cites W2781601109 @default.
- W3035315707 cites W2789470432 @default.
- W3035315707 cites W2808260248 @default.
- W3035315707 cites W2892447761 @default.
- W3035315707 cites W2952965841 @default.
- W3035315707 cites W2978371603 @default.
- W3035315707 cites W2996796737 @default.
- W3035315707 cites W3010522197 @default.
- W3035315707 cites W3014352065 @default.
- W3035315707 doi "https://doi.org/10.4155/bio-2020-0137" @default.
- W3035315707 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32530290" @default.
- W3035315707 hasPublicationYear "2020" @default.
- W3035315707 type Work @default.
- W3035315707 sameAs 3035315707 @default.
- W3035315707 citedByCount "9" @default.
- W3035315707 countsByYear W30353157072020 @default.
- W3035315707 countsByYear W30353157072021 @default.
- W3035315707 countsByYear W30353157072022 @default.
- W3035315707 countsByYear W30353157072023 @default.
- W3035315707 crossrefType "journal-article" @default.
- W3035315707 hasAuthorship W3035315707A5056478743 @default.
- W3035315707 hasAuthorship W3035315707A5075169564 @default.
- W3035315707 hasAuthorship W3035315707A5081994437 @default.
- W3035315707 hasConcept C171250308 @default.
- W3035315707 hasConcept C185592680 @default.
- W3035315707 hasConcept C192562407 @default.
- W3035315707 hasConcept C21565614 @default.
- W3035315707 hasConcept C2522767166 @default.
- W3035315707 hasConcept C41008148 @default.
- W3035315707 hasConcept C43617362 @default.
- W3035315707 hasConcept C70721500 @default.
- W3035315707 hasConcept C86803240 @default.
- W3035315707 hasConceptScore W3035315707C171250308 @default.
- W3035315707 hasConceptScore W3035315707C185592680 @default.
- W3035315707 hasConceptScore W3035315707C192562407 @default.
- W3035315707 hasConceptScore W3035315707C21565614 @default.
- W3035315707 hasConceptScore W3035315707C2522767166 @default.
- W3035315707 hasConceptScore W3035315707C41008148 @default.
- W3035315707 hasConceptScore W3035315707C43617362 @default.
- W3035315707 hasConceptScore W3035315707C70721500 @default.
- W3035315707 hasConceptScore W3035315707C86803240 @default.
- W3035315707 hasIssue "11" @default.
- W3035315707 hasLocation W30353157071 @default.
- W3035315707 hasOpenAccess W3035315707 @default.
- W3035315707 hasPrimaryLocation W30353157071 @default.
- W3035315707 hasRelatedWork W2018243915 @default.
- W3035315707 hasRelatedWork W2021703583 @default.
- W3035315707 hasRelatedWork W2071257957 @default.
- W3035315707 hasRelatedWork W2107751952 @default.
- W3035315707 hasRelatedWork W2152476191 @default.
- W3035315707 hasRelatedWork W2483024785 @default.
- W3035315707 hasRelatedWork W2748952813 @default.
- W3035315707 hasRelatedWork W2890957471 @default.
- W3035315707 hasRelatedWork W2899084033 @default.
- W3035315707 hasRelatedWork W1538574688 @default.
- W3035315707 hasVolume "12" @default.
- W3035315707 isParatext "false" @default.
- W3035315707 isRetracted "false" @default.
- W3035315707 magId "3035315707" @default.
- W3035315707 workType "article" @default.