Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035353528> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3035353528 endingPage "110927" @default.
- W3035353528 startingPage "110927" @default.
- W3035353528 abstract "Abstract Machine learning approaches can establish the complex and non-linear relationship among input and response variables for the seismic damage assessment of structures. However, lack of explainability of complex machine learning models prevents their use in such assessment. This paper uses extensive experimental databases to suggest random forest machine learning models for failure mode predictions of reinforced concrete columns and shear walls, employs the recently developed SHapley Additive exPlanations approach to rank input variables for identification of failure modes, and explains why the machine learning model predicts a specific failure mode for a given sample or experiment. A random forest model established provides an accuracy of 84% and 86% for unknown data of columns and shear walls, respectively. The geometric variables and reinforcement indices are critical parameters that influence failure modes. The study also reveals that existing strategies of failure mode identification based solely on geometric features are not enough to properly identify failure modes." @default.
- W3035353528 created "2020-06-19" @default.
- W3035353528 creator A5068778859 @default.
- W3035353528 creator A5083856718 @default.
- W3035353528 creator A5089826082 @default.
- W3035353528 date "2020-09-01" @default.
- W3035353528 modified "2023-10-17" @default.
- W3035353528 title "Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach" @default.
- W3035353528 cites W1977834849 @default.
- W3035353528 cites W1986074276 @default.
- W3035353528 cites W2087060390 @default.
- W3035353528 cites W2282821441 @default.
- W3035353528 cites W2561978594 @default.
- W3035353528 cites W2769788551 @default.
- W3035353528 cites W2788697198 @default.
- W3035353528 cites W2789135478 @default.
- W3035353528 cites W2789384841 @default.
- W3035353528 cites W2790304257 @default.
- W3035353528 cites W2892328882 @default.
- W3035353528 cites W2930890426 @default.
- W3035353528 cites W2963587403 @default.
- W3035353528 cites W2964772981 @default.
- W3035353528 cites W2972460946 @default.
- W3035353528 cites W2974551902 @default.
- W3035353528 cites W2981416566 @default.
- W3035353528 cites W2983371826 @default.
- W3035353528 cites W2998594833 @default.
- W3035353528 cites W3006597564 @default.
- W3035353528 doi "https://doi.org/10.1016/j.engstruct.2020.110927" @default.
- W3035353528 hasPublicationYear "2020" @default.
- W3035353528 type Work @default.
- W3035353528 sameAs 3035353528 @default.
- W3035353528 citedByCount "261" @default.
- W3035353528 countsByYear W30353535282020 @default.
- W3035353528 countsByYear W30353535282021 @default.
- W3035353528 countsByYear W30353535282022 @default.
- W3035353528 countsByYear W30353535282023 @default.
- W3035353528 crossrefType "journal-article" @default.
- W3035353528 hasAuthorship W3035353528A5068778859 @default.
- W3035353528 hasAuthorship W3035353528A5083856718 @default.
- W3035353528 hasAuthorship W3035353528A5089826082 @default.
- W3035353528 hasConcept C111919701 @default.
- W3035353528 hasConcept C119857082 @default.
- W3035353528 hasConcept C127413603 @default.
- W3035353528 hasConcept C154945302 @default.
- W3035353528 hasConcept C41008148 @default.
- W3035353528 hasConcept C48677424 @default.
- W3035353528 hasConcept C66283442 @default.
- W3035353528 hasConcept C66938386 @default.
- W3035353528 hasConceptScore W3035353528C111919701 @default.
- W3035353528 hasConceptScore W3035353528C119857082 @default.
- W3035353528 hasConceptScore W3035353528C127413603 @default.
- W3035353528 hasConceptScore W3035353528C154945302 @default.
- W3035353528 hasConceptScore W3035353528C41008148 @default.
- W3035353528 hasConceptScore W3035353528C48677424 @default.
- W3035353528 hasConceptScore W3035353528C66283442 @default.
- W3035353528 hasConceptScore W3035353528C66938386 @default.
- W3035353528 hasFunder F4320322120 @default.
- W3035353528 hasLocation W30353535281 @default.
- W3035353528 hasOpenAccess W3035353528 @default.
- W3035353528 hasPrimaryLocation W30353535281 @default.
- W3035353528 hasRelatedWork W1964022544 @default.
- W3035353528 hasRelatedWork W2899084033 @default.
- W3035353528 hasRelatedWork W2961085424 @default.
- W3035353528 hasRelatedWork W3046775127 @default.
- W3035353528 hasRelatedWork W3145451772 @default.
- W3035353528 hasRelatedWork W4205958290 @default.
- W3035353528 hasRelatedWork W4286629047 @default.
- W3035353528 hasRelatedWork W4306321456 @default.
- W3035353528 hasRelatedWork W4306674287 @default.
- W3035353528 hasRelatedWork W4224009465 @default.
- W3035353528 hasVolume "219" @default.
- W3035353528 isParatext "false" @default.
- W3035353528 isRetracted "false" @default.
- W3035353528 magId "3035353528" @default.
- W3035353528 workType "article" @default.