Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035356477> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3035356477 endingPage "10" @default.
- W3035356477 startingPage "1" @default.
- W3035356477 abstract "Machine learning method has gradually become an important and effective method to analyze reservoir parameters in reservoir numerical simulation. This paper provides a machine learning method to evaluate the connectivity between injection and production wells controlled by interlayer in reservoir. In this paper, Back Propagation (BP) and Convolutional Neural Networks (CNNs) are used to train the dynamic data with the influence of interlayer control connectivity in the reservoir layer as the training model. The dataset is trained with dynamic production data under different permeability, interlayer dip angle, and injection pressure. The connectivity is calculated by using the deep learning model, and the connectivity factor <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M1><mml:mi>K</mml:mi></mml:math> is defined. The results show that compared with BP, CNN has better performance in connectivity, average absolute relative deviation (AARD) below 10.01% higher. Moreover, CNN prediction results are close to the traditional methods. This paper provides new insights and methods to evaluate the interwell connectivity in conventional or unconventional reservoirs." @default.
- W3035356477 created "2020-06-19" @default.
- W3035356477 creator A5044873483 @default.
- W3035356477 date "2020-06-10" @default.
- W3035356477 modified "2023-10-14" @default.
- W3035356477 title "Potential for Evaluation of Interwell Connectivity under the Effect of Intraformational Bed in Reservoirs Utilizing Machine Learning Methods" @default.
- W3035356477 cites W1983037954 @default.
- W3035356477 cites W1988918431 @default.
- W3035356477 cites W2008387167 @default.
- W3035356477 cites W2014697670 @default.
- W3035356477 cites W2023785854 @default.
- W3035356477 cites W2028920977 @default.
- W3035356477 cites W2043269918 @default.
- W3035356477 cites W2092461117 @default.
- W3035356477 cites W2093316786 @default.
- W3035356477 cites W2188581537 @default.
- W3035356477 cites W2319244357 @default.
- W3035356477 cites W2589156560 @default.
- W3035356477 cites W2761070841 @default.
- W3035356477 cites W2762517398 @default.
- W3035356477 cites W2889128012 @default.
- W3035356477 cites W2891234523 @default.
- W3035356477 cites W2891589939 @default.
- W3035356477 cites W2896579505 @default.
- W3035356477 cites W2973827652 @default.
- W3035356477 cites W2978151438 @default.
- W3035356477 cites W2996404864 @default.
- W3035356477 cites W3008711387 @default.
- W3035356477 doi "https://doi.org/10.1155/2020/1651549" @default.
- W3035356477 hasPublicationYear "2020" @default.
- W3035356477 type Work @default.
- W3035356477 sameAs 3035356477 @default.
- W3035356477 citedByCount "5" @default.
- W3035356477 countsByYear W30353564772021 @default.
- W3035356477 countsByYear W30353564772022 @default.
- W3035356477 crossrefType "journal-article" @default.
- W3035356477 hasAuthorship W3035356477A5044873483 @default.
- W3035356477 hasBestOaLocation W30353564771 @default.
- W3035356477 hasConcept C105795698 @default.
- W3035356477 hasConcept C108583219 @default.
- W3035356477 hasConcept C11413529 @default.
- W3035356477 hasConcept C119128265 @default.
- W3035356477 hasConcept C119857082 @default.
- W3035356477 hasConcept C120882062 @default.
- W3035356477 hasConcept C120934525 @default.
- W3035356477 hasConcept C127313418 @default.
- W3035356477 hasConcept C154945302 @default.
- W3035356477 hasConcept C155032097 @default.
- W3035356477 hasConcept C185592680 @default.
- W3035356477 hasConcept C33923547 @default.
- W3035356477 hasConcept C41008148 @default.
- W3035356477 hasConcept C41625074 @default.
- W3035356477 hasConcept C50644808 @default.
- W3035356477 hasConcept C51989270 @default.
- W3035356477 hasConcept C55493867 @default.
- W3035356477 hasConcept C81363708 @default.
- W3035356477 hasConceptScore W3035356477C105795698 @default.
- W3035356477 hasConceptScore W3035356477C108583219 @default.
- W3035356477 hasConceptScore W3035356477C11413529 @default.
- W3035356477 hasConceptScore W3035356477C119128265 @default.
- W3035356477 hasConceptScore W3035356477C119857082 @default.
- W3035356477 hasConceptScore W3035356477C120882062 @default.
- W3035356477 hasConceptScore W3035356477C120934525 @default.
- W3035356477 hasConceptScore W3035356477C127313418 @default.
- W3035356477 hasConceptScore W3035356477C154945302 @default.
- W3035356477 hasConceptScore W3035356477C155032097 @default.
- W3035356477 hasConceptScore W3035356477C185592680 @default.
- W3035356477 hasConceptScore W3035356477C33923547 @default.
- W3035356477 hasConceptScore W3035356477C41008148 @default.
- W3035356477 hasConceptScore W3035356477C41625074 @default.
- W3035356477 hasConceptScore W3035356477C50644808 @default.
- W3035356477 hasConceptScore W3035356477C51989270 @default.
- W3035356477 hasConceptScore W3035356477C55493867 @default.
- W3035356477 hasConceptScore W3035356477C81363708 @default.
- W3035356477 hasFunder F4320325743 @default.
- W3035356477 hasLocation W30353564771 @default.
- W3035356477 hasOpenAccess W3035356477 @default.
- W3035356477 hasPrimaryLocation W30353564771 @default.
- W3035356477 hasRelatedWork W2337926734 @default.
- W3035356477 hasRelatedWork W2799614062 @default.
- W3035356477 hasRelatedWork W2883041339 @default.
- W3035356477 hasRelatedWork W2963958939 @default.
- W3035356477 hasRelatedWork W3173182854 @default.
- W3035356477 hasRelatedWork W3181335979 @default.
- W3035356477 hasRelatedWork W4311257506 @default.
- W3035356477 hasRelatedWork W4319994054 @default.
- W3035356477 hasRelatedWork W4320802194 @default.
- W3035356477 hasRelatedWork W4366224123 @default.
- W3035356477 hasVolume "2020" @default.
- W3035356477 isParatext "false" @default.
- W3035356477 isRetracted "false" @default.
- W3035356477 magId "3035356477" @default.
- W3035356477 workType "article" @default.