Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035360660> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3035360660 endingPage "e04108" @default.
- W3035360660 startingPage "e04108" @default.
- W3035360660 abstract "We provide a MATLAB computer code for training artificial neural network (ANN) with N+1 layer (N-hidden layer) architecture. Currently, the ANN application to solving geophysical problems have been confined to the 2-layer, i.e. 1-hidden layer, architecture because there are no open source software codes for higher numbered layer architecture. The restriction to the 2-layer architecture comes with the attendant model error due to insufficient hidden neurons to fully define the ANN machines. The N-hidden layer ANN has a general architecture whose sensitivity is the accumulation of the backpropagation of the error between the feedforward output and the target patterns. The trained ANN machine can be retrieved by the gradient optimization method namely: Levenberg-Marquardt, steepest descent or conjugate gradient methods. Our test results on the Poisson's ratio (as a function of compressional and shear wave velocities) machines with 2-, 3- and 4-layer ANN architectures reveal that the machines with higher number of layers outperform those with lower number of layers. Specifically, the 3- and 4-layer ANN machines have ≥97% accuracy, predicting the lithology and fluid identification in the oil and gas industry by means of the Poisson's ratio, whereas the 2-layer ANN machines poorly predict the results with as large error as 20%. These results therefore reinforce our belief that this open source code will facilitate the training of accurate N-hidden layer ANN sophisticated machines with high performance and quality delivery of geophysical solutions. Moreover, the easy portability of the functions of the code into other software will enhance a versatile application and further research to improve its performance." @default.
- W3035360660 created "2020-06-19" @default.
- W3035360660 creator A5015885268 @default.
- W3035360660 creator A5021914546 @default.
- W3035360660 creator A5039761254 @default.
- W3035360660 creator A5043900580 @default.
- W3035360660 date "2020-06-01" @default.
- W3035360660 modified "2023-09-27" @default.
- W3035360660 title "N-hidden layer artificial neural network architecture computer code: geophysical application example" @default.
- W3035360660 cites W1979581468 @default.
- W3035360660 cites W1981142313 @default.
- W3035360660 cites W1983381046 @default.
- W3035360660 cites W2004233155 @default.
- W3035360660 cites W2013138474 @default.
- W3035360660 cites W2061069258 @default.
- W3035360660 cites W2078496737 @default.
- W3035360660 cites W2101927907 @default.
- W3035360660 cites W2125797575 @default.
- W3035360660 cites W2162312311 @default.
- W3035360660 cites W2169289875 @default.
- W3035360660 cites W2172044679 @default.
- W3035360660 cites W2750424527 @default.
- W3035360660 cites W2773640108 @default.
- W3035360660 cites W2790520039 @default.
- W3035360660 cites W2933644970 @default.
- W3035360660 cites W2993759822 @default.
- W3035360660 doi "https://doi.org/10.1016/j.heliyon.2020.e04108" @default.
- W3035360660 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7298414" @default.
- W3035360660 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32566777" @default.
- W3035360660 hasPublicationYear "2020" @default.
- W3035360660 type Work @default.
- W3035360660 sameAs 3035360660 @default.
- W3035360660 citedByCount "8" @default.
- W3035360660 countsByYear W30353606602021 @default.
- W3035360660 countsByYear W30353606602022 @default.
- W3035360660 countsByYear W30353606602023 @default.
- W3035360660 crossrefType "journal-article" @default.
- W3035360660 hasAuthorship W3035360660A5015885268 @default.
- W3035360660 hasAuthorship W3035360660A5021914546 @default.
- W3035360660 hasAuthorship W3035360660A5039761254 @default.
- W3035360660 hasAuthorship W3035360660A5043900580 @default.
- W3035360660 hasBestOaLocation W30353606601 @default.
- W3035360660 hasConcept C119857082 @default.
- W3035360660 hasConcept C153258448 @default.
- W3035360660 hasConcept C154945302 @default.
- W3035360660 hasConcept C155032097 @default.
- W3035360660 hasConcept C178790620 @default.
- W3035360660 hasConcept C185592680 @default.
- W3035360660 hasConcept C193415008 @default.
- W3035360660 hasConcept C2779227376 @default.
- W3035360660 hasConcept C38652104 @default.
- W3035360660 hasConcept C41008148 @default.
- W3035360660 hasConcept C50644808 @default.
- W3035360660 hasConceptScore W3035360660C119857082 @default.
- W3035360660 hasConceptScore W3035360660C153258448 @default.
- W3035360660 hasConceptScore W3035360660C154945302 @default.
- W3035360660 hasConceptScore W3035360660C155032097 @default.
- W3035360660 hasConceptScore W3035360660C178790620 @default.
- W3035360660 hasConceptScore W3035360660C185592680 @default.
- W3035360660 hasConceptScore W3035360660C193415008 @default.
- W3035360660 hasConceptScore W3035360660C2779227376 @default.
- W3035360660 hasConceptScore W3035360660C38652104 @default.
- W3035360660 hasConceptScore W3035360660C41008148 @default.
- W3035360660 hasConceptScore W3035360660C50644808 @default.
- W3035360660 hasIssue "6" @default.
- W3035360660 hasLocation W30353606601 @default.
- W3035360660 hasLocation W30353606602 @default.
- W3035360660 hasLocation W30353606603 @default.
- W3035360660 hasLocation W30353606604 @default.
- W3035360660 hasOpenAccess W3035360660 @default.
- W3035360660 hasPrimaryLocation W30353606601 @default.
- W3035360660 hasRelatedWork W1183256782 @default.
- W3035360660 hasRelatedWork W1489050811 @default.
- W3035360660 hasRelatedWork W1984055435 @default.
- W3035360660 hasRelatedWork W2018863220 @default.
- W3035360660 hasRelatedWork W2146640810 @default.
- W3035360660 hasRelatedWork W3123071383 @default.
- W3035360660 hasRelatedWork W3159389381 @default.
- W3035360660 hasRelatedWork W3170244987 @default.
- W3035360660 hasRelatedWork W3185486575 @default.
- W3035360660 hasRelatedWork W2609564064 @default.
- W3035360660 hasVolume "6" @default.
- W3035360660 isParatext "false" @default.
- W3035360660 isRetracted "false" @default.
- W3035360660 magId "3035360660" @default.
- W3035360660 workType "article" @default.