Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035414010> ?p ?o ?g. }
- W3035414010 endingPage "12" @default.
- W3035414010 startingPage "1" @default.
- W3035414010 abstract "Accurate prediction and reliable significant factor analysis of incident clearance time are two main objects of traffic incident management (TIM) system, as it could help to relieve traffic congestion caused by traffic incidents. This study applies the extreme gradient boosting machine algorithm (XGBoost) to predict incident clearance time on freeway and analyze the significant factors of clearance time. The XGBoost integrates the superiority of statistical and machine learning methods, which can flexibly deal with the nonlinear data in high-dimensional space and quantify the relative importance of the explanatory variables. The data collected from the Washington Incident Tracking System in 2011 are used in this research. To investigate the potential philosophy hidden in data, K -means is chosen to cluster the data into two clusters. The XGBoost is built for each cluster. Bayesian optimization is used to optimize the parameters of XGBoost, and the MAPE is considered as the predictive indicator to evaluate the prediction performance. A comparative study confirms that the XGBoost outperforms other models. In addition, response time, AADT (annual average daily traffic), incident type, and lane closure type are identified as the significant explanatory variables for clearance time." @default.
- W3035414010 created "2020-06-19" @default.
- W3035414010 creator A5028977876 @default.
- W3035414010 creator A5031038629 @default.
- W3035414010 creator A5056595975 @default.
- W3035414010 creator A5077763192 @default.
- W3035414010 creator A5085025467 @default.
- W3035414010 date "2020-06-09" @default.
- W3035414010 modified "2023-10-15" @default.
- W3035414010 title "Traffic Incident Clearance Time Prediction and Influencing Factor Analysis Using Extreme Gradient Boosting Model" @default.
- W3035414010 cites W1437335841 @default.
- W3035414010 cites W1529414135 @default.
- W3035414010 cites W1662941239 @default.
- W3035414010 cites W1883111670 @default.
- W3035414010 cites W1920524037 @default.
- W3035414010 cites W1965036911 @default.
- W3035414010 cites W197184986 @default.
- W3035414010 cites W1975185440 @default.
- W3035414010 cites W1980399291 @default.
- W3035414010 cites W1987971958 @default.
- W3035414010 cites W1993339912 @default.
- W3035414010 cites W1995840715 @default.
- W3035414010 cites W2001765444 @default.
- W3035414010 cites W2010039425 @default.
- W3035414010 cites W2013845817 @default.
- W3035414010 cites W2023534834 @default.
- W3035414010 cites W2025816835 @default.
- W3035414010 cites W2035481685 @default.
- W3035414010 cites W2038648836 @default.
- W3035414010 cites W2040794788 @default.
- W3035414010 cites W2047194874 @default.
- W3035414010 cites W2050138223 @default.
- W3035414010 cites W2051350735 @default.
- W3035414010 cites W2051657664 @default.
- W3035414010 cites W2056425734 @default.
- W3035414010 cites W2082845493 @default.
- W3035414010 cites W2098642267 @default.
- W3035414010 cites W2135310819 @default.
- W3035414010 cites W2151744441 @default.
- W3035414010 cites W2169556851 @default.
- W3035414010 cites W2195780797 @default.
- W3035414010 cites W2287585202 @default.
- W3035414010 cites W2312269111 @default.
- W3035414010 cites W2324805613 @default.
- W3035414010 cites W2419833520 @default.
- W3035414010 cites W2540929797 @default.
- W3035414010 cites W2551960028 @default.
- W3035414010 cites W2567881713 @default.
- W3035414010 cites W2588462097 @default.
- W3035414010 cites W2770810810 @default.
- W3035414010 cites W2790017000 @default.
- W3035414010 cites W2809662051 @default.
- W3035414010 cites W2897709835 @default.
- W3035414010 cites W2899037650 @default.
- W3035414010 cites W2908743854 @default.
- W3035414010 cites W2910469672 @default.
- W3035414010 cites W2945476434 @default.
- W3035414010 cites W2947979925 @default.
- W3035414010 cites W2984332092 @default.
- W3035414010 cites W2995118319 @default.
- W3035414010 cites W2998394500 @default.
- W3035414010 cites W3008021512 @default.
- W3035414010 doi "https://doi.org/10.1155/2020/6401082" @default.
- W3035414010 hasPublicationYear "2020" @default.
- W3035414010 type Work @default.
- W3035414010 sameAs 3035414010 @default.
- W3035414010 citedByCount "16" @default.
- W3035414010 countsByYear W30354140102021 @default.
- W3035414010 countsByYear W30354140102022 @default.
- W3035414010 countsByYear W30354140102023 @default.
- W3035414010 crossrefType "journal-article" @default.
- W3035414010 hasAuthorship W3035414010A5028977876 @default.
- W3035414010 hasAuthorship W3035414010A5031038629 @default.
- W3035414010 hasAuthorship W3035414010A5056595975 @default.
- W3035414010 hasAuthorship W3035414010A5077763192 @default.
- W3035414010 hasAuthorship W3035414010A5085025467 @default.
- W3035414010 hasBestOaLocation W30354140101 @default.
- W3035414010 hasConcept C105795698 @default.
- W3035414010 hasConcept C119857082 @default.
- W3035414010 hasConcept C124101348 @default.
- W3035414010 hasConcept C33923547 @default.
- W3035414010 hasConcept C41008148 @default.
- W3035414010 hasConcept C46686674 @default.
- W3035414010 hasConceptScore W3035414010C105795698 @default.
- W3035414010 hasConceptScore W3035414010C119857082 @default.
- W3035414010 hasConceptScore W3035414010C124101348 @default.
- W3035414010 hasConceptScore W3035414010C33923547 @default.
- W3035414010 hasConceptScore W3035414010C41008148 @default.
- W3035414010 hasConceptScore W3035414010C46686674 @default.
- W3035414010 hasFunder F4320321001 @default.
- W3035414010 hasLocation W30354140101 @default.
- W3035414010 hasOpenAccess W3035414010 @default.
- W3035414010 hasPrimaryLocation W30354140101 @default.
- W3035414010 hasRelatedWork W1963746220 @default.
- W3035414010 hasRelatedWork W1998940060 @default.
- W3035414010 hasRelatedWork W2255183448 @default.
- W3035414010 hasRelatedWork W2302684437 @default.
- W3035414010 hasRelatedWork W2347219288 @default.