Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035435057> ?p ?o ?g. }
- W3035435057 endingPage "36" @default.
- W3035435057 startingPage "30" @default.
- W3035435057 abstract "Total metabolic tumor volume (TMTV), calculated from 18F-FDG PET/CT baseline studies, is a prognostic factor in diffuse large B-cell lymphoma (DLBCL) whose measurement requires the segmentation of all malignant foci throughout the body. No consensus currently exists regarding the most accurate approach for such segmentation. Further, all methods still require extensive manual input from an experienced reader. We examined whether an artificial intelligence-based method could estimate TMTV with a comparable prognostic value to TMTV measured by experts. Methods: Baseline 18F-FDG PET/CT scans of 301 DLBCL patients from the REMARC trial (NCT01122472) were retrospectively analyzed using a prototype software (PET Assisted Reporting System [PARS]). An automated whole-body high-uptake segmentation algorithm identified all 3-dimensional regions of interest (ROIs) with increased tracer uptake. The resulting ROIs were processed using a convolutional neural network trained on an independent cohort and classified as nonsuspicious or suspicious uptake. The PARS-based TMTV (TMTVPARS) was estimated as the sum of the volumes of ROIs classified as suspicious uptake. The reference TMTV (TMTVREF) was measured by 2 experienced readers using independent semiautomatic software. The TMTVPARS was compared with the TMTVREF in terms of prognostic value for progression-free survival (PFS) and overall survival (OS). Results: TMTVPARS was significantly correlated with the TMTVREF (ρ = 0.76; P < 0.001). Using PARS, an average of 24 regions per subject with increased tracer uptake was identified, and an average of 20 regions per subject was correctly identified as nonsuspicious or suspicious, yielding 85% classification accuracy, 80% sensitivity, and 88% specificity, compared with the TMTVREF region. Both TMTV results were predictive of PFS (hazard ratio, 2.3 and 2.6 for TMTVPARS and TMTVREF, respectively; P < 0.001) and OS (hazard ratio, 2.8 and 3.7 for TMTVPARS and TMTVREF, respectively; P < 0.001). Conclusion: TMTVPARS was consistent with that obtained by experts and displayed a significant prognostic value for PFS and OS in DLBCL patients. Classification of high-uptake regions using deep learning for rapidly discarding physiologic uptake may considerably simplify TMTV estimation, reduce observer variability, and facilitate the use of TMTV as a predictive factor in DLBCL patients." @default.
- W3035435057 created "2020-06-19" @default.
- W3035435057 creator A5014639728 @default.
- W3035435057 creator A5017919002 @default.
- W3035435057 creator A5025204567 @default.
- W3035435057 creator A5032181150 @default.
- W3035435057 creator A5033073385 @default.
- W3035435057 creator A5057332201 @default.
- W3035435057 creator A5061373895 @default.
- W3035435057 creator A5062305482 @default.
- W3035435057 creator A5079749862 @default.
- W3035435057 creator A5083883351 @default.
- W3035435057 date "2020-06-12" @default.
- W3035435057 modified "2023-10-17" @default.
- W3035435057 title "Deep-Learning <sup>18</sup>F-FDG Uptake Classification Enables Total Metabolic Tumor Volume Estimation in Diffuse Large B-Cell Lymphoma" @default.
- W3035435057 cites W1597318419 @default.
- W3035435057 cites W1972232210 @default.
- W3035435057 cites W2006617902 @default.
- W3035435057 cites W2063563316 @default.
- W3035435057 cites W2063691874 @default.
- W3035435057 cites W2072351874 @default.
- W3035435057 cites W2075627595 @default.
- W3035435057 cites W2077941010 @default.
- W3035435057 cites W2150587745 @default.
- W3035435057 cites W2152421110 @default.
- W3035435057 cites W2155263737 @default.
- W3035435057 cites W2206977664 @default.
- W3035435057 cites W2290716155 @default.
- W3035435057 cites W2503562113 @default.
- W3035435057 cites W2507512417 @default.
- W3035435057 cites W2605767476 @default.
- W3035435057 cites W2744261860 @default.
- W3035435057 cites W2782920912 @default.
- W3035435057 cites W2787594587 @default.
- W3035435057 cites W2798083690 @default.
- W3035435057 cites W2927995861 @default.
- W3035435057 cites W2951824965 @default.
- W3035435057 cites W2985222986 @default.
- W3035435057 cites W2994824962 @default.
- W3035435057 cites W3002263815 @default.
- W3035435057 cites W4205736005 @default.
- W3035435057 doi "https://doi.org/10.2967/jnumed.120.242412" @default.
- W3035435057 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32532925" @default.
- W3035435057 hasPublicationYear "2020" @default.
- W3035435057 type Work @default.
- W3035435057 sameAs 3035435057 @default.
- W3035435057 citedByCount "67" @default.
- W3035435057 countsByYear W30354350572020 @default.
- W3035435057 countsByYear W30354350572021 @default.
- W3035435057 countsByYear W30354350572022 @default.
- W3035435057 countsByYear W30354350572023 @default.
- W3035435057 crossrefType "journal-article" @default.
- W3035435057 hasAuthorship W3035435057A5014639728 @default.
- W3035435057 hasAuthorship W3035435057A5017919002 @default.
- W3035435057 hasAuthorship W3035435057A5025204567 @default.
- W3035435057 hasAuthorship W3035435057A5032181150 @default.
- W3035435057 hasAuthorship W3035435057A5033073385 @default.
- W3035435057 hasAuthorship W3035435057A5057332201 @default.
- W3035435057 hasAuthorship W3035435057A5061373895 @default.
- W3035435057 hasAuthorship W3035435057A5062305482 @default.
- W3035435057 hasAuthorship W3035435057A5079749862 @default.
- W3035435057 hasAuthorship W3035435057A5083883351 @default.
- W3035435057 hasBestOaLocation W30354350571 @default.
- W3035435057 hasConcept C142724271 @default.
- W3035435057 hasConcept C154945302 @default.
- W3035435057 hasConcept C199374082 @default.
- W3035435057 hasConcept C2775842073 @default.
- W3035435057 hasConcept C2778559949 @default.
- W3035435057 hasConcept C2779338263 @default.
- W3035435057 hasConcept C2989005 @default.
- W3035435057 hasConcept C41008148 @default.
- W3035435057 hasConcept C71924100 @default.
- W3035435057 hasConcept C81363708 @default.
- W3035435057 hasConcept C89600930 @default.
- W3035435057 hasConceptScore W3035435057C142724271 @default.
- W3035435057 hasConceptScore W3035435057C154945302 @default.
- W3035435057 hasConceptScore W3035435057C199374082 @default.
- W3035435057 hasConceptScore W3035435057C2775842073 @default.
- W3035435057 hasConceptScore W3035435057C2778559949 @default.
- W3035435057 hasConceptScore W3035435057C2779338263 @default.
- W3035435057 hasConceptScore W3035435057C2989005 @default.
- W3035435057 hasConceptScore W3035435057C41008148 @default.
- W3035435057 hasConceptScore W3035435057C71924100 @default.
- W3035435057 hasConceptScore W3035435057C81363708 @default.
- W3035435057 hasConceptScore W3035435057C89600930 @default.
- W3035435057 hasIssue "1" @default.
- W3035435057 hasLocation W30354350571 @default.
- W3035435057 hasLocation W30354350572 @default.
- W3035435057 hasLocation W30354350573 @default.
- W3035435057 hasLocation W30354350574 @default.
- W3035435057 hasLocation W30354350575 @default.
- W3035435057 hasLocation W30354350576 @default.
- W3035435057 hasLocation W30354350577 @default.
- W3035435057 hasOpenAccess W3035435057 @default.
- W3035435057 hasPrimaryLocation W30354350571 @default.
- W3035435057 hasRelatedWork W1982187894 @default.
- W3035435057 hasRelatedWork W2111347914 @default.
- W3035435057 hasRelatedWork W2117290479 @default.