Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035461749> ?p ?o ?g. }
- W3035461749 endingPage "81" @default.
- W3035461749 startingPage "68" @default.
- W3035461749 abstract "Parameter retrieval and model inversion are key problems in remote sensing and Earth observation. Currently, different approximations exist: a direct, yet costly, inversion of radiative transfer models (RTMs); the statistical inversion with in situ data that often results in problems with extrapolation outside the study area; and the most widely adopted hybrid modeling by which statistical models, mostly nonlinear and non-parametric machine learning algorithms, are applied to invert RTM simulations. We will focus on the latter. Among the different existing algorithms, in the last decade kernel based methods, and Gaussian Processes (GPs) in particular, have provided useful and informative solutions to such RTM inversion problems. This is in large part due to the confidence intervals they provide, and their predictive accuracy. However, RTMs are very complex, highly nonlinear, and typically hierarchical models, so that very often a single (shallow) GP model cannot capture complex feature relations for inversion. This motivates the use of deeper hierarchical architectures, while still preserving the desirable properties of GPs. This paper introduces the use of deep Gaussian Processes (DGPs) for bio-geo-physical model inversion. Unlike shallow GP models, DGPs account for complicated (modular, hierarchical) processes, provide an efficient solution that scales well to big datasets, and improve prediction accuracy over their single layer counterpart. In the experimental section, we provide empirical evidence of performance for the estimation of surface temperature and dew point temperature from infrared sounding data, as well as for the prediction of chlorophyll content, inorganic suspended matter, and coloured dissolved matter from multispectral data acquired by the Sentinel-3 OLCI sensor. The presented methodology allows for more expressive forms of GPs in big remote sensing model inversion problems." @default.
- W3035461749 created "2020-06-19" @default.
- W3035461749 creator A5001159359 @default.
- W3035461749 creator A5006029857 @default.
- W3035461749 creator A5023830568 @default.
- W3035461749 creator A5039052506 @default.
- W3035461749 date "2020-08-01" @default.
- W3035461749 modified "2023-10-13" @default.
- W3035461749 title "Deep Gaussian processes for biogeophysical parameter retrieval and model inversion" @default.
- W3035461749 cites W1544131626 @default.
- W3035461749 cites W1969753304 @default.
- W3035461749 cites W1978239093 @default.
- W3035461749 cites W1980881904 @default.
- W3035461749 cites W1986812364 @default.
- W3035461749 cites W1999676742 @default.
- W3035461749 cites W2009649743 @default.
- W3035461749 cites W2020084465 @default.
- W3035461749 cites W2074506978 @default.
- W3035461749 cites W2077336029 @default.
- W3035461749 cites W2089048406 @default.
- W3035461749 cites W2092503755 @default.
- W3035461749 cites W2100452085 @default.
- W3035461749 cites W2143789670 @default.
- W3035461749 cites W2167881994 @default.
- W3035461749 cites W221493477 @default.
- W3035461749 cites W2275144172 @default.
- W3035461749 cites W2517171266 @default.
- W3035461749 cites W2572951874 @default.
- W3035461749 cites W2613806236 @default.
- W3035461749 cites W2755091472 @default.
- W3035461749 cites W2764320286 @default.
- W3035461749 cites W2773584025 @default.
- W3035461749 cites W2773630767 @default.
- W3035461749 cites W2792309568 @default.
- W3035461749 cites W2803867753 @default.
- W3035461749 cites W2900535057 @default.
- W3035461749 cites W2901799630 @default.
- W3035461749 cites W2923245913 @default.
- W3035461749 cites W2940726923 @default.
- W3035461749 cites W2953972663 @default.
- W3035461749 cites W2986750949 @default.
- W3035461749 cites W3100157715 @default.
- W3035461749 cites W3101380508 @default.
- W3035461749 cites W4376463272 @default.
- W3035461749 doi "https://doi.org/10.1016/j.isprsjprs.2020.04.014" @default.
- W3035461749 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7386942" @default.
- W3035461749 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32747851" @default.
- W3035461749 hasPublicationYear "2020" @default.
- W3035461749 type Work @default.
- W3035461749 sameAs 3035461749 @default.
- W3035461749 citedByCount "23" @default.
- W3035461749 countsByYear W30354617492020 @default.
- W3035461749 countsByYear W30354617492021 @default.
- W3035461749 countsByYear W30354617492022 @default.
- W3035461749 countsByYear W30354617492023 @default.
- W3035461749 crossrefType "journal-article" @default.
- W3035461749 hasAuthorship W3035461749A5001159359 @default.
- W3035461749 hasAuthorship W3035461749A5006029857 @default.
- W3035461749 hasAuthorship W3035461749A5023830568 @default.
- W3035461749 hasAuthorship W3035461749A5039052506 @default.
- W3035461749 hasBestOaLocation W30354617491 @default.
- W3035461749 hasConcept C105795698 @default.
- W3035461749 hasConcept C109007969 @default.
- W3035461749 hasConcept C11413529 @default.
- W3035461749 hasConcept C117251300 @default.
- W3035461749 hasConcept C119857082 @default.
- W3035461749 hasConcept C121332964 @default.
- W3035461749 hasConcept C124101348 @default.
- W3035461749 hasConcept C127313418 @default.
- W3035461749 hasConcept C151730666 @default.
- W3035461749 hasConcept C154945302 @default.
- W3035461749 hasConcept C163716315 @default.
- W3035461749 hasConcept C1893757 @default.
- W3035461749 hasConcept C33923547 @default.
- W3035461749 hasConcept C41008148 @default.
- W3035461749 hasConcept C61326573 @default.
- W3035461749 hasConcept C62520636 @default.
- W3035461749 hasConcept C62649853 @default.
- W3035461749 hasConceptScore W3035461749C105795698 @default.
- W3035461749 hasConceptScore W3035461749C109007969 @default.
- W3035461749 hasConceptScore W3035461749C11413529 @default.
- W3035461749 hasConceptScore W3035461749C117251300 @default.
- W3035461749 hasConceptScore W3035461749C119857082 @default.
- W3035461749 hasConceptScore W3035461749C121332964 @default.
- W3035461749 hasConceptScore W3035461749C124101348 @default.
- W3035461749 hasConceptScore W3035461749C127313418 @default.
- W3035461749 hasConceptScore W3035461749C151730666 @default.
- W3035461749 hasConceptScore W3035461749C154945302 @default.
- W3035461749 hasConceptScore W3035461749C163716315 @default.
- W3035461749 hasConceptScore W3035461749C1893757 @default.
- W3035461749 hasConceptScore W3035461749C33923547 @default.
- W3035461749 hasConceptScore W3035461749C41008148 @default.
- W3035461749 hasConceptScore W3035461749C61326573 @default.
- W3035461749 hasConceptScore W3035461749C62520636 @default.
- W3035461749 hasConceptScore W3035461749C62649853 @default.
- W3035461749 hasFunder F4320334678 @default.
- W3035461749 hasLocation W30354617491 @default.
- W3035461749 hasLocation W30354617492 @default.