Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035472714> ?p ?o ?g. }
- W3035472714 endingPage "5745" @default.
- W3035472714 startingPage "5737" @default.
- W3035472714 abstract "The H + CH3OH reaction, which plays an important role in combustion and the interstellar medium, presents a prototypical system with multi channels and tight transition states. However, no globally reliable potential energy surface (PES) has been available to date. Here we develop global analytical PESs for this system using the permutation-invariant polynomial neural network (PIP-NN) and the high-dimensional neural network (HD-NN) methods based on a large number of data points calculated at the level of the explicitly correlated unrestricted coupled cluster single, double, and perturbative triple level with the augmented correlation corrected valence triple-ζ basis set (UCCSD(T)-F12a/AVTZ). We demonstrate that both machine learning PESs are able to accurately describe all dynamically relevant reaction channels. At a collision energy of 20 kcal/mol, quasi-classical trajectory calculations reveal that the dominant channel is the hydrogen abstraction from the methyl site, yielding H2 + CH2OH. The reaction of this major channel takes place mainly via the direct rebound mechanism. Both the vibrational and rotational states of the H2 product are relatively cold, and large portions of the available energy are converted into the product translational motion." @default.
- W3035472714 created "2020-06-19" @default.
- W3035472714 creator A5026774143 @default.
- W3035472714 creator A5027642792 @default.
- W3035472714 creator A5057242361 @default.
- W3035472714 date "2020-06-12" @default.
- W3035472714 modified "2023-10-15" @default.
- W3035472714 title "Accurate Global Potential Energy Surfaces for the H + CH<sub>3</sub>OH Reaction by Neural Network Fitting with Permutation Invariance" @default.
- W3035472714 cites W121453741 @default.
- W3035472714 cites W1963896701 @default.
- W3035472714 cites W1964882117 @default.
- W3035472714 cites W1975997599 @default.
- W3035472714 cites W1977513091 @default.
- W3035472714 cites W1977536281 @default.
- W3035472714 cites W1977931069 @default.
- W3035472714 cites W1980424805 @default.
- W3035472714 cites W1987669079 @default.
- W3035472714 cites W1993077801 @default.
- W3035472714 cites W1998970054 @default.
- W3035472714 cites W2000193505 @default.
- W3035472714 cites W2000366472 @default.
- W3035472714 cites W2015712766 @default.
- W3035472714 cites W2016142702 @default.
- W3035472714 cites W2020146612 @default.
- W3035472714 cites W2021278364 @default.
- W3035472714 cites W2022434972 @default.
- W3035472714 cites W2025444507 @default.
- W3035472714 cites W2025758627 @default.
- W3035472714 cites W2034298050 @default.
- W3035472714 cites W2035286224 @default.
- W3035472714 cites W2036653958 @default.
- W3035472714 cites W2037228727 @default.
- W3035472714 cites W2037812737 @default.
- W3035472714 cites W2042354946 @default.
- W3035472714 cites W2048123595 @default.
- W3035472714 cites W2048195126 @default.
- W3035472714 cites W2052622126 @default.
- W3035472714 cites W2053707660 @default.
- W3035472714 cites W2055526416 @default.
- W3035472714 cites W2057820912 @default.
- W3035472714 cites W2058370262 @default.
- W3035472714 cites W2067175811 @default.
- W3035472714 cites W2068473123 @default.
- W3035472714 cites W2073801307 @default.
- W3035472714 cites W2077113683 @default.
- W3035472714 cites W2086289140 @default.
- W3035472714 cites W2087141492 @default.
- W3035472714 cites W2087676986 @default.
- W3035472714 cites W2092332236 @default.
- W3035472714 cites W2097282067 @default.
- W3035472714 cites W2137705443 @default.
- W3035472714 cites W2145114089 @default.
- W3035472714 cites W2158654934 @default.
- W3035472714 cites W2165131446 @default.
- W3035472714 cites W2194951329 @default.
- W3035472714 cites W2314344869 @default.
- W3035472714 cites W2319169037 @default.
- W3035472714 cites W2321317784 @default.
- W3035472714 cites W2325769997 @default.
- W3035472714 cites W2335019009 @default.
- W3035472714 cites W2508146432 @default.
- W3035472714 cites W2547447472 @default.
- W3035472714 cites W2734823752 @default.
- W3035472714 cites W2744411428 @default.
- W3035472714 cites W2746244909 @default.
- W3035472714 cites W2748607584 @default.
- W3035472714 cites W2773647776 @default.
- W3035472714 cites W2786006915 @default.
- W3035472714 cites W2786791309 @default.
- W3035472714 cites W2813651344 @default.
- W3035472714 cites W2908805179 @default.
- W3035472714 cites W2923177108 @default.
- W3035472714 cites W2946415640 @default.
- W3035472714 cites W2958410409 @default.
- W3035472714 cites W2975909635 @default.
- W3035472714 cites W2989798414 @default.
- W3035472714 cites W3033461492 @default.
- W3035472714 cites W3036145161 @default.
- W3035472714 cites W4236403263 @default.
- W3035472714 cites W4240035468 @default.
- W3035472714 cites W4249193622 @default.
- W3035472714 cites W2803943331 @default.
- W3035472714 doi "https://doi.org/10.1021/acs.jpca.0c04182" @default.
- W3035472714 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32530628" @default.
- W3035472714 hasPublicationYear "2020" @default.
- W3035472714 type Work @default.
- W3035472714 sameAs 3035472714 @default.
- W3035472714 citedByCount "37" @default.
- W3035472714 countsByYear W30354727142020 @default.
- W3035472714 countsByYear W30354727142021 @default.
- W3035472714 countsByYear W30354727142022 @default.
- W3035472714 countsByYear W30354727142023 @default.
- W3035472714 crossrefType "journal-article" @default.
- W3035472714 hasAuthorship W3035472714A5026774143 @default.
- W3035472714 hasAuthorship W3035472714A5027642792 @default.
- W3035472714 hasAuthorship W3035472714A5057242361 @default.
- W3035472714 hasBestOaLocation W30354727141 @default.
- W3035472714 hasConcept C121332964 @default.