Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035495391> ?p ?o ?g. }
- W3035495391 endingPage "116032" @default.
- W3035495391 startingPage "116032" @default.
- W3035495391 abstract "Tannic acid-type organic composite adsorbents (PA316TAS, AR-01TAS, PYRTAS, WA10TAS, WA20TAS, and WA30TAS), combined with hydrolyzed and sulfonated tannic acid (TAS) and porous-type strongly basic anion-exchange resin (PA316), benzimidazole-type anion-exchange resin embedded in high-porous silica beads (AR-01), pyridine-type anion-exchange resin (PYR), acrylic-type weakly basic anion-exchange resin (WA10), or styrene-type weakly basic anion-exchange resins (WA20 and WA30) for simultaneous removal of various kinds of radionuclides in river water were successfully synthesized. The adsorption behavior of twelve kinds of simulated radionuclides (Mn, Co, Sr, Y, Ru, Rh, Sb, Te, Cs, Ba, Eu, and I (I− and IO3−)) on these composite adsorbents has been studied in real river water at room temperature. PA316TAS adsorbents showed much higher distribution coefficients (Kd) for all metal ions. TAS structure has more selective adsorption ability for Mn, Co, Sr, Y, Cs, Ba, Eu, and IO3−. On the other hand, Y, Ru, Rh, Sb, Te, Eu, I (I− and IO3−) were adsorbed on both PA316 and TAS structures. To evaluate the validity of these mechanistic expectations, the respective chemical adsorption behaviors of Mn, Co, Sr, etc. and PA316TAS adsorbent were examined in river water ranging in temperature from 278 to 333 K. As was expected, one adsorption mechanism for Mn, Co, Sr, Cs, and Ba systems and two types of adsorption mechanisms for Y, Ru, Rh, Sb, Te, Eu, I (I− and IO3−) systems were observed. On the other hand, the precipitation of Mn, Co, Y, Ru, Rh, Te, and Eu was formed by ozonation for river water, that is, ozone can transform Mn, Co, Y, Ru, Rh, Te, and Eu ions into the insoluble precipitates. Hence, one straight line for Sr, Cs, Ba systems and two types of straight lines for Sb, I (I− and IO3−) systems were obtained in river water treated with ozone. The chromatography experiments of Cs, Sr, I (I− and IO3−) were carried out to calculate their maximum adsorption capacities. The obtained maximum adsorption capacities of Cs, Sr, and I− mixed with IO3− were 1.7 × 10−4 (Cs), 1.8 × 10−3 (Cs/O3), 7.8 × 10−5 (Sr), 5.6 × 10−4 (Sr/O3), 5.4 × 10−2 (I− and IO3−), 3.1 × 10−2 (I− and IO3−/O3) mol/g - PA316TAS. It was discovered that the maximum adsorption capacities of I− and IO3− for the composite adsorbent is unprecedented high and the capacity become much greater than an order of magnitude, compared with those of previous reports. This phenomenon suggests the formation of electron-donor-acceptor (EDA) complexes or pseudo EDA complex. Based on these results, it was concluded that the combined use of tannic acid-type organic composite adsorbents and ozone made it possible to remove simultaneously and effectively various kinds of radionuclides in river water in the wide pH and temperature ranges." @default.
- W3035495391 created "2020-06-19" @default.
- W3035495391 creator A5005089053 @default.
- W3035495391 creator A5034857851 @default.
- W3035495391 creator A5043028692 @default.
- W3035495391 creator A5048213512 @default.
- W3035495391 date "2020-09-01" @default.
- W3035495391 modified "2023-10-15" @default.
- W3035495391 title "Combined use of tannic acid-type organic composite adsorbents and ozone for simultaneous removal of various kinds of radionuclides in river water" @default.
- W3035495391 cites W1914377622 @default.
- W3035495391 cites W1971331133 @default.
- W3035495391 cites W1978100374 @default.
- W3035495391 cites W1980008338 @default.
- W3035495391 cites W1982257554 @default.
- W3035495391 cites W1983412787 @default.
- W3035495391 cites W1984017545 @default.
- W3035495391 cites W1984719633 @default.
- W3035495391 cites W1985466524 @default.
- W3035495391 cites W1995674886 @default.
- W3035495391 cites W1997334489 @default.
- W3035495391 cites W1998106653 @default.
- W3035495391 cites W1998235427 @default.
- W3035495391 cites W1999943457 @default.
- W3035495391 cites W2000883083 @default.
- W3035495391 cites W2001105041 @default.
- W3035495391 cites W2012999633 @default.
- W3035495391 cites W2018387561 @default.
- W3035495391 cites W2021960664 @default.
- W3035495391 cites W2026219982 @default.
- W3035495391 cites W2028508356 @default.
- W3035495391 cites W2028740898 @default.
- W3035495391 cites W2032378775 @default.
- W3035495391 cites W2034612679 @default.
- W3035495391 cites W2041416567 @default.
- W3035495391 cites W2044627515 @default.
- W3035495391 cites W2057717265 @default.
- W3035495391 cites W2059055405 @default.
- W3035495391 cites W2059893773 @default.
- W3035495391 cites W2062173265 @default.
- W3035495391 cites W2063048504 @default.
- W3035495391 cites W2067895240 @default.
- W3035495391 cites W2069771150 @default.
- W3035495391 cites W2074535627 @default.
- W3035495391 cites W2078711342 @default.
- W3035495391 cites W2082152241 @default.
- W3035495391 cites W2083051578 @default.
- W3035495391 cites W2086171408 @default.
- W3035495391 cites W2089914141 @default.
- W3035495391 cites W2089925253 @default.
- W3035495391 cites W2111104483 @default.
- W3035495391 cites W2119847647 @default.
- W3035495391 cites W2137554682 @default.
- W3035495391 cites W2152045896 @default.
- W3035495391 cites W2174738017 @default.
- W3035495391 cites W2192390766 @default.
- W3035495391 cites W2246341675 @default.
- W3035495391 cites W2290037907 @default.
- W3035495391 cites W2312907715 @default.
- W3035495391 cites W2318735583 @default.
- W3035495391 cites W2321972685 @default.
- W3035495391 cites W2331316534 @default.
- W3035495391 cites W2475025825 @default.
- W3035495391 cites W2517204267 @default.
- W3035495391 cites W2620856286 @default.
- W3035495391 cites W270411322 @default.
- W3035495391 cites W2734410937 @default.
- W3035495391 cites W2765723240 @default.
- W3035495391 cites W2783537483 @default.
- W3035495391 cites W2794620051 @default.
- W3035495391 cites W2886984687 @default.
- W3035495391 cites W2887238621 @default.
- W3035495391 cites W2891711684 @default.
- W3035495391 cites W2898857152 @default.
- W3035495391 cites W2906284173 @default.
- W3035495391 cites W2913490970 @default.
- W3035495391 cites W2921470676 @default.
- W3035495391 cites W2947986846 @default.
- W3035495391 cites W2949268133 @default.
- W3035495391 cites W2952231154 @default.
- W3035495391 cites W2976265061 @default.
- W3035495391 doi "https://doi.org/10.1016/j.watres.2020.116032" @default.
- W3035495391 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32574820" @default.
- W3035495391 hasPublicationYear "2020" @default.
- W3035495391 type Work @default.
- W3035495391 sameAs 3035495391 @default.
- W3035495391 citedByCount "10" @default.
- W3035495391 countsByYear W30354953912021 @default.
- W3035495391 countsByYear W30354953912022 @default.
- W3035495391 countsByYear W30354953912023 @default.
- W3035495391 crossrefType "journal-article" @default.
- W3035495391 hasAuthorship W3035495391A5005089053 @default.
- W3035495391 hasAuthorship W3035495391A5034857851 @default.
- W3035495391 hasAuthorship W3035495391A5043028692 @default.
- W3035495391 hasAuthorship W3035495391A5048213512 @default.
- W3035495391 hasBestOaLocation W30354953911 @default.
- W3035495391 hasConcept C117760992 @default.
- W3035495391 hasConcept C13965031 @default.
- W3035495391 hasConcept C145148216 @default.