Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035502245> ?p ?o ?g. }
- W3035502245 endingPage "102172" @default.
- W3035502245 startingPage "102172" @default.
- W3035502245 abstract "Vegetation phenology has a great impact on land-atmosphere interactions like carbon cycling, albedo, and water and energy exchanges. To understand and predict these critical land-atmosphere feedbacks, it is crucial to measure and quantify phenological responses to climate variability, and ultimately climate change. Coarse-resolution sensors such as MODIS and AVHRR have been useful to study vegetation phenology from regional to global scales. These sensors are, however, not capable of discerning phenological variation at moderate spatial scales. By offering increased observation density and higher spatial resolution, the combination of Landsat and Sentinel-2 time series might provide the opportunity to overcome this limitation. In this study, we analyzed the potential of combined Sentinel-2 and Landsat time series for estimating start of season (SOS) of broadleaf forests across Germany for the year 2018. We tested two common statistical modeling approaches (logistic and generalized additive models using thin plate splines) and the two most commonly used vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). We found strong agreement between SOS estimates from logistic and spline models (rEVI = 0.86; rNDVI = 0.65), whereas agreement was higher for EVI than for NDVI (RMSDEVI = 3.07, RMSDNDVI = 5.26 days). The choice of vegetation index thus had a higher impact on the results than the fitting method. The EVI-based SOS also showed higher correlation with ground observations compared to NDVI (rEVI = 0.51, rNDVI = 0.42). Data density played an important role in estimating land surface phenology. Models combining Sentinel-2A/B, with an average cloud-free observation frequency of 12 days, were largely consistent with the combined Landsat and Sentinel-2 models, suggesting that Sentinel-2A/B may be sufficient to capture SOS for most areas in Germany in 2018. However, in non-overlapping swath areas and mountain areas, observation frequency was significantly lower, underlining the need to combine Landsat and Sentinel-2 for consistent SOS estimates over large areas. Our study demonstrates that estimating SOS of temperate broadleaf forests at medium spatial resolution has become feasible with combined Landsat and Sentinel-2 time series." @default.
- W3035502245 created "2020-06-19" @default.
- W3035502245 creator A5011756637 @default.
- W3035502245 creator A5041171844 @default.
- W3035502245 creator A5067730563 @default.
- W3035502245 creator A5084928163 @default.
- W3035502245 date "2020-10-01" @default.
- W3035502245 modified "2023-10-05" @default.
- W3035502245 title "Characterizing spring phenology of temperate broadleaf forests using Landsat and Sentinel-2 time series" @default.
- W3035502245 cites W1647688774 @default.
- W3035502245 cites W1910947081 @default.
- W3035502245 cites W1967157701 @default.
- W3035502245 cites W1977545093 @default.
- W3035502245 cites W1996463620 @default.
- W3035502245 cites W2009382268 @default.
- W3035502245 cites W2036992772 @default.
- W3035502245 cites W2043839818 @default.
- W3035502245 cites W2048269636 @default.
- W3035502245 cites W2063623478 @default.
- W3035502245 cites W2069715270 @default.
- W3035502245 cites W2072093516 @default.
- W3035502245 cites W2089776857 @default.
- W3035502245 cites W2095054126 @default.
- W3035502245 cites W2099428109 @default.
- W3035502245 cites W2113410727 @default.
- W3035502245 cites W2126708624 @default.
- W3035502245 cites W2129331467 @default.
- W3035502245 cites W2133501143 @default.
- W3035502245 cites W2137410316 @default.
- W3035502245 cites W2139835945 @default.
- W3035502245 cites W2140308441 @default.
- W3035502245 cites W2151011640 @default.
- W3035502245 cites W2164681141 @default.
- W3035502245 cites W2167787089 @default.
- W3035502245 cites W2285529357 @default.
- W3035502245 cites W2514092235 @default.
- W3035502245 cites W2522055505 @default.
- W3035502245 cites W2598146853 @default.
- W3035502245 cites W2751786729 @default.
- W3035502245 cites W2773717538 @default.
- W3035502245 cites W2788091003 @default.
- W3035502245 cites W2791230726 @default.
- W3035502245 cites W2802758852 @default.
- W3035502245 cites W2903689264 @default.
- W3035502245 cites W2945667213 @default.
- W3035502245 cites W3004741759 @default.
- W3035502245 doi "https://doi.org/10.1016/j.jag.2020.102172" @default.
- W3035502245 hasPublicationYear "2020" @default.
- W3035502245 type Work @default.
- W3035502245 sameAs 3035502245 @default.
- W3035502245 citedByCount "26" @default.
- W3035502245 countsByYear W30355022452020 @default.
- W3035502245 countsByYear W30355022452021 @default.
- W3035502245 countsByYear W30355022452022 @default.
- W3035502245 countsByYear W30355022452023 @default.
- W3035502245 crossrefType "journal-article" @default.
- W3035502245 hasAuthorship W3035502245A5011756637 @default.
- W3035502245 hasAuthorship W3035502245A5041171844 @default.
- W3035502245 hasAuthorship W3035502245A5067730563 @default.
- W3035502245 hasAuthorship W3035502245A5084928163 @default.
- W3035502245 hasBestOaLocation W30355022451 @default.
- W3035502245 hasConcept C100970517 @default.
- W3035502245 hasConcept C101000010 @default.
- W3035502245 hasConcept C127313418 @default.
- W3035502245 hasConcept C132651083 @default.
- W3035502245 hasConcept C142724271 @default.
- W3035502245 hasConcept C1549246 @default.
- W3035502245 hasConcept C166957645 @default.
- W3035502245 hasConcept C18903297 @default.
- W3035502245 hasConcept C197534560 @default.
- W3035502245 hasConcept C205649164 @default.
- W3035502245 hasConcept C2776133958 @default.
- W3035502245 hasConcept C2780376076 @default.
- W3035502245 hasConcept C39432304 @default.
- W3035502245 hasConcept C49204034 @default.
- W3035502245 hasConcept C51417038 @default.
- W3035502245 hasConcept C62649853 @default.
- W3035502245 hasConcept C71924100 @default.
- W3035502245 hasConcept C78869512 @default.
- W3035502245 hasConcept C86803240 @default.
- W3035502245 hasConcept C91586092 @default.
- W3035502245 hasConceptScore W3035502245C100970517 @default.
- W3035502245 hasConceptScore W3035502245C101000010 @default.
- W3035502245 hasConceptScore W3035502245C127313418 @default.
- W3035502245 hasConceptScore W3035502245C132651083 @default.
- W3035502245 hasConceptScore W3035502245C142724271 @default.
- W3035502245 hasConceptScore W3035502245C1549246 @default.
- W3035502245 hasConceptScore W3035502245C166957645 @default.
- W3035502245 hasConceptScore W3035502245C18903297 @default.
- W3035502245 hasConceptScore W3035502245C197534560 @default.
- W3035502245 hasConceptScore W3035502245C205649164 @default.
- W3035502245 hasConceptScore W3035502245C2776133958 @default.
- W3035502245 hasConceptScore W3035502245C2780376076 @default.
- W3035502245 hasConceptScore W3035502245C39432304 @default.
- W3035502245 hasConceptScore W3035502245C49204034 @default.
- W3035502245 hasConceptScore W3035502245C51417038 @default.
- W3035502245 hasConceptScore W3035502245C62649853 @default.
- W3035502245 hasConceptScore W3035502245C71924100 @default.