Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035510612> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3035510612 endingPage "102564" @default.
- W3035510612 startingPage "102564" @default.
- W3035510612 abstract "This article describes an experimental investigation into the inter-dataset generalization of supervised machine learning methods, trained to distinguish between benign and several classes of malicious network flows. The first part details the process and results of establishing reference classification scores on CIC-IDS2017 and CSE-CIC-IDS2018, two modern, labeled data sets for testing intrusion detection systems. The data sets are divided into several days each pertaining to different attack classes (DoS, DDoS, infiltration, botnet, etc.). A pipeline has been created that includes twelve supervised learning algorithms from different families. Subsequently to this comparative analysis the DoS / SSL and botnet attack classes, which are represented in both data sets and are well-classified by many algorithms, have been selected to test the inter-dataset generalization strength of the trained models. Exposure of these models to unseen, but related samples without additional training was expected to maintain high classification performance, but this assumption is shown to be erroneous (at least for the tested attack classes). To our knowledge, there is no prior literature that validates the efficacy of supervised ML-based intrusion detection systems outside of the dataset(s) on which they have been trained. Our first results question the implied link that great intra-dataset generalization leads to great inter- or extra-dataset generalization. Further experimentation is required to discover the scope and causes of this deficiency as well as potential solutions." @default.
- W3035510612 created "2020-06-19" @default.
- W3035510612 creator A5051784384 @default.
- W3035510612 creator A5061693660 @default.
- W3035510612 creator A5062378693 @default.
- W3035510612 creator A5078209506 @default.
- W3035510612 date "2020-10-01" @default.
- W3035510612 modified "2023-10-17" @default.
- W3035510612 title "Inter-dataset generalization strength of supervised machine learning methods for intrusion detection" @default.
- W3035510612 cites W1484917059 @default.
- W3035510612 cites W2031163547 @default.
- W3035510612 cites W2139669429 @default.
- W3035510612 cites W2342249984 @default.
- W3035510612 cites W2342408547 @default.
- W3035510612 cites W2432038293 @default.
- W3035510612 cites W2597472767 @default.
- W3035510612 cites W2747144285 @default.
- W3035510612 cites W2762776925 @default.
- W3035510612 cites W2892556724 @default.
- W3035510612 cites W2896412072 @default.
- W3035510612 cites W2914502888 @default.
- W3035510612 cites W2950250245 @default.
- W3035510612 cites W3006579283 @default.
- W3035510612 doi "https://doi.org/10.1016/j.jisa.2020.102564" @default.
- W3035510612 hasPublicationYear "2020" @default.
- W3035510612 type Work @default.
- W3035510612 sameAs 3035510612 @default.
- W3035510612 citedByCount "21" @default.
- W3035510612 countsByYear W30355106122020 @default.
- W3035510612 countsByYear W30355106122021 @default.
- W3035510612 countsByYear W30355106122022 @default.
- W3035510612 countsByYear W30355106122023 @default.
- W3035510612 crossrefType "journal-article" @default.
- W3035510612 hasAuthorship W3035510612A5051784384 @default.
- W3035510612 hasAuthorship W3035510612A5061693660 @default.
- W3035510612 hasAuthorship W3035510612A5062378693 @default.
- W3035510612 hasAuthorship W3035510612A5078209506 @default.
- W3035510612 hasConcept C119857082 @default.
- W3035510612 hasConcept C124101348 @default.
- W3035510612 hasConcept C134306372 @default.
- W3035510612 hasConcept C154945302 @default.
- W3035510612 hasConcept C177148314 @default.
- W3035510612 hasConcept C33923547 @default.
- W3035510612 hasConcept C35525427 @default.
- W3035510612 hasConcept C41008148 @default.
- W3035510612 hasConceptScore W3035510612C119857082 @default.
- W3035510612 hasConceptScore W3035510612C124101348 @default.
- W3035510612 hasConceptScore W3035510612C134306372 @default.
- W3035510612 hasConceptScore W3035510612C154945302 @default.
- W3035510612 hasConceptScore W3035510612C177148314 @default.
- W3035510612 hasConceptScore W3035510612C33923547 @default.
- W3035510612 hasConceptScore W3035510612C35525427 @default.
- W3035510612 hasConceptScore W3035510612C41008148 @default.
- W3035510612 hasLocation W30355106121 @default.
- W3035510612 hasOpenAccess W3035510612 @default.
- W3035510612 hasPrimaryLocation W30355106121 @default.
- W3035510612 hasRelatedWork W2961085424 @default.
- W3035510612 hasRelatedWork W3046775127 @default.
- W3035510612 hasRelatedWork W3107602296 @default.
- W3035510612 hasRelatedWork W3170094116 @default.
- W3035510612 hasRelatedWork W3209574120 @default.
- W3035510612 hasRelatedWork W4210805261 @default.
- W3035510612 hasRelatedWork W4306674287 @default.
- W3035510612 hasRelatedWork W4312192474 @default.
- W3035510612 hasRelatedWork W4386462264 @default.
- W3035510612 hasRelatedWork W4387297750 @default.
- W3035510612 hasVolume "54" @default.
- W3035510612 isParatext "false" @default.
- W3035510612 isRetracted "false" @default.
- W3035510612 magId "3035510612" @default.
- W3035510612 workType "article" @default.