Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035525428> ?p ?o ?g. }
- W3035525428 endingPage "101515" @default.
- W3035525428 startingPage "101515" @default.
- W3035525428 abstract "The roll-out of 5G infrastructure can provide enhanced high capacity, low latency communications enabling a range of new use cases. However, to deliver the improvements 5G promises, we need to understand how to enhance capacity and coverage, at reasonable cost, across space and over time. In this paper, we take a spatio-temporal simulation modeling approach, using industry-standard engineering models of 5G wireless networks, to test how different infrastructure strategies perform under scenarios of uncertain future demand. We use coupled open-source models to analyze a UK growth corridor, a system-of-cities comprising 7 urban areas, known as the Oxford-Cambridge Arc. We find that population growth has a marginal impact on total demand for 5G (up to 15%), as the main factor driving demand is the increase in per user data consumption resulting mainly from video. Additionally, the results suggest only limited justification for deploying 5G based purely on the need for more capacity. Strategies which reuse existing brownfield Macro Cell sites are enough to meet future demand for Enhanced Mobile Broadband, except in the densest urban areas. While spatio-temporal analysis of infrastructure is common in some sectors (e.g. transport, energy and water), there has been a lack of open analysis of digital infrastructure. This study makes a novel contribution by providing an open and reproducible spatio-temporal assessment of different 5G technologies at a time when 5G is starting to roll-out around the world." @default.
- W3035525428 created "2020-06-19" @default.
- W3035525428 creator A5070863075 @default.
- W3035525428 creator A5076357359 @default.
- W3035525428 date "2020-09-01" @default.
- W3035525428 modified "2023-09-26" @default.
- W3035525428 title "The importance of spatio-temporal infrastructure assessment: Evidence for 5G from the Oxford–Cambridge Arc" @default.
- W3035525428 cites W1627149554 @default.
- W3035525428 cites W1917153186 @default.
- W3035525428 cites W1987457895 @default.
- W3035525428 cites W2000746608 @default.
- W3035525428 cites W2001700783 @default.
- W3035525428 cites W2001863759 @default.
- W3035525428 cites W2022632412 @default.
- W3035525428 cites W2025304215 @default.
- W3035525428 cites W2028247052 @default.
- W3035525428 cites W2042974601 @default.
- W3035525428 cites W2051018811 @default.
- W3035525428 cites W2054692642 @default.
- W3035525428 cites W2076051456 @default.
- W3035525428 cites W2080754158 @default.
- W3035525428 cites W2087151343 @default.
- W3035525428 cites W2100298713 @default.
- W3035525428 cites W2136757478 @default.
- W3035525428 cites W2163468205 @default.
- W3035525428 cites W2276627153 @default.
- W3035525428 cites W2293272531 @default.
- W3035525428 cites W2326092552 @default.
- W3035525428 cites W2330095956 @default.
- W3035525428 cites W2381074797 @default.
- W3035525428 cites W2426660610 @default.
- W3035525428 cites W2430451911 @default.
- W3035525428 cites W2489779762 @default.
- W3035525428 cites W2531072308 @default.
- W3035525428 cites W2552622754 @default.
- W3035525428 cites W2574540656 @default.
- W3035525428 cites W2587178166 @default.
- W3035525428 cites W2602726343 @default.
- W3035525428 cites W2611629089 @default.
- W3035525428 cites W2619420887 @default.
- W3035525428 cites W2739755749 @default.
- W3035525428 cites W2743470529 @default.
- W3035525428 cites W2751405739 @default.
- W3035525428 cites W2767884480 @default.
- W3035525428 cites W2781598438 @default.
- W3035525428 cites W2782943110 @default.
- W3035525428 cites W2784291237 @default.
- W3035525428 cites W2784652038 @default.
- W3035525428 cites W2787862659 @default.
- W3035525428 cites W2792054443 @default.
- W3035525428 cites W2792381815 @default.
- W3035525428 cites W2792647989 @default.
- W3035525428 cites W2794476565 @default.
- W3035525428 cites W2799789400 @default.
- W3035525428 cites W2804457991 @default.
- W3035525428 cites W2808745938 @default.
- W3035525428 cites W2809481083 @default.
- W3035525428 cites W2811391846 @default.
- W3035525428 cites W2876319397 @default.
- W3035525428 cites W2883979846 @default.
- W3035525428 cites W2884238711 @default.
- W3035525428 cites W2888111688 @default.
- W3035525428 cites W2891195597 @default.
- W3035525428 cites W2898674099 @default.
- W3035525428 cites W2899967653 @default.
- W3035525428 cites W2902511681 @default.
- W3035525428 cites W2904516392 @default.
- W3035525428 cites W2911382763 @default.
- W3035525428 cites W2915025024 @default.
- W3035525428 cites W2918337511 @default.
- W3035525428 cites W2921698889 @default.
- W3035525428 cites W2932079869 @default.
- W3035525428 cites W2944400342 @default.
- W3035525428 cites W2947428072 @default.
- W3035525428 cites W2948010559 @default.
- W3035525428 cites W2958449190 @default.
- W3035525428 cites W2962955129 @default.
- W3035525428 cites W2971886249 @default.
- W3035525428 cites W2981969281 @default.
- W3035525428 cites W2982697584 @default.
- W3035525428 cites W2985886419 @default.
- W3035525428 cites W2987163116 @default.
- W3035525428 cites W2987381163 @default.
- W3035525428 cites W3003251644 @default.
- W3035525428 doi "https://doi.org/10.1016/j.compenvurbsys.2020.101515" @default.
- W3035525428 hasPublicationYear "2020" @default.
- W3035525428 type Work @default.
- W3035525428 sameAs 3035525428 @default.
- W3035525428 citedByCount "21" @default.
- W3035525428 countsByYear W30355254282020 @default.
- W3035525428 countsByYear W30355254282021 @default.
- W3035525428 countsByYear W30355254282022 @default.
- W3035525428 countsByYear W30355254282023 @default.
- W3035525428 crossrefType "journal-article" @default.
- W3035525428 hasAuthorship W3035525428A5070863075 @default.
- W3035525428 hasAuthorship W3035525428A5076357359 @default.
- W3035525428 hasBestOaLocation W30355254282 @default.
- W3035525428 hasConcept C127413603 @default.