Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035552617> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3035552617 abstract "Edge connectivity of a graph is one of the most fundamental graph-theoretic concepts. The celebrated tree packing theorem of Tutte and Nash-Williams from 1961 states that every $k$-edge connected graph $G$ contains a collection $cal{T}$ of $lfloor k/2 rfloor$ edge-disjoint spanning trees, that we refer to as a tree packing; the diameter of the tree packing $cal{T}$ is the largest diameter of any tree in $cal{T}$. A desirable property of a tree packing, that is both sufficient and necessary for leveraging the high connectivity of a graph in distributed communication, is that its diameter is low. Yet, despite extensive research in this area, it is still unclear how to compute a tree packing, whose diameter is sublinear in $|V(G)|$, in a low-diameter graph $G$, or alternatively how to show that such a packing does not exist. In this paper we provide first non-trivial upper and lower bounds on the diameter of tree packing. First, we show that, for every $k$-edge connected $n$-vertex graph $G$ of diameter $D$, there is a tree packing $cal{T}$ of size $Omega(k)$, diameter $O((101klog n)^D)$, that causes edge-congestion at most $2$. Second, we show that for every $k$-edge connected $n$-vertex graph $G$ of diameter $D$, the diameter of $G[p]$ is $O(k^{D(D+1)/2})$ with high probability, where $G[p]$ is obtained by sampling each edge of $G$ independently with probability $p=Theta(log n/k)$. This provides a packing of $Omega(k/log n)$ edge-disjoint trees of diameter at most $O(k^{(D(D+1)/2)})$ each. We then prove that these two results are nearly tight. Lastly, we show that if every pair of vertices in a graph has $k$ edge-disjoint paths of length at most $D$ connecting them, then there is a tree packing of size $k$, diameter $O(Dlog n)$, causing edge-congestion $O(log n)$. We also provide several applications of low-diameter tree packing in distributed computation." @default.
- W3035552617 created "2020-06-19" @default.
- W3035552617 creator A5022875077 @default.
- W3035552617 creator A5056023203 @default.
- W3035552617 creator A5072885035 @default.
- W3035552617 date "2020-06-12" @default.
- W3035552617 modified "2023-09-27" @default.
- W3035552617 title "On Packing Low-Diameter Spanning Trees" @default.
- W3035552617 cites W1568961751 @default.
- W3035552617 cites W1963633992 @default.
- W3035552617 cites W1974912205 @default.
- W3035552617 cites W1989274820 @default.
- W3035552617 cites W2013440902 @default.
- W3035552617 cites W2022175859 @default.
- W3035552617 cites W2026798971 @default.
- W3035552617 cites W2032607682 @default.
- W3035552617 cites W2084251294 @default.
- W3035552617 cites W2084427019 @default.
- W3035552617 cites W2167621755 @default.
- W3035552617 cites W2261119684 @default.
- W3035552617 cites W2293762274 @default.
- W3035552617 cites W2294674552 @default.
- W3035552617 cites W2515165863 @default.
- W3035552617 cites W2615041105 @default.
- W3035552617 cites W2737872496 @default.
- W3035552617 cites W2784498202 @default.
- W3035552617 cites W2785528314 @default.
- W3035552617 cites W2801916274 @default.
- W3035552617 cites W2946021716 @default.
- W3035552617 cites W2950667052 @default.
- W3035552617 cites W2951036599 @default.
- W3035552617 cites W2952422587 @default.
- W3035552617 cites W2963654823 @default.
- W3035552617 cites W3000941460 @default.
- W3035552617 hasPublicationYear "2020" @default.
- W3035552617 type Work @default.
- W3035552617 sameAs 3035552617 @default.
- W3035552617 citedByCount "1" @default.
- W3035552617 countsByYear W30355526172021 @default.
- W3035552617 crossrefType "posted-content" @default.
- W3035552617 hasAuthorship W3035552617A5022875077 @default.
- W3035552617 hasAuthorship W3035552617A5056023203 @default.
- W3035552617 hasAuthorship W3035552617A5072885035 @default.
- W3035552617 hasConcept C113174947 @default.
- W3035552617 hasConcept C114614502 @default.
- W3035552617 hasConcept C117160843 @default.
- W3035552617 hasConcept C118615104 @default.
- W3035552617 hasConcept C124302570 @default.
- W3035552617 hasConcept C130253271 @default.
- W3035552617 hasConcept C132525143 @default.
- W3035552617 hasConcept C203776342 @default.
- W3035552617 hasConcept C33923547 @default.
- W3035552617 hasConcept C43517604 @default.
- W3035552617 hasConcept C64331007 @default.
- W3035552617 hasConcept C80899671 @default.
- W3035552617 hasConceptScore W3035552617C113174947 @default.
- W3035552617 hasConceptScore W3035552617C114614502 @default.
- W3035552617 hasConceptScore W3035552617C117160843 @default.
- W3035552617 hasConceptScore W3035552617C118615104 @default.
- W3035552617 hasConceptScore W3035552617C124302570 @default.
- W3035552617 hasConceptScore W3035552617C130253271 @default.
- W3035552617 hasConceptScore W3035552617C132525143 @default.
- W3035552617 hasConceptScore W3035552617C203776342 @default.
- W3035552617 hasConceptScore W3035552617C33923547 @default.
- W3035552617 hasConceptScore W3035552617C43517604 @default.
- W3035552617 hasConceptScore W3035552617C64331007 @default.
- W3035552617 hasConceptScore W3035552617C80899671 @default.
- W3035552617 hasLocation W30355526171 @default.
- W3035552617 hasOpenAccess W3035552617 @default.
- W3035552617 hasPrimaryLocation W30355526171 @default.
- W3035552617 hasRelatedWork W1595641751 @default.
- W3035552617 hasRelatedWork W1595869144 @default.
- W3035552617 hasRelatedWork W1665790140 @default.
- W3035552617 hasRelatedWork W2024123096 @default.
- W3035552617 hasRelatedWork W2185384843 @default.
- W3035552617 hasRelatedWork W2254381352 @default.
- W3035552617 hasRelatedWork W2285644245 @default.
- W3035552617 hasRelatedWork W2346911794 @default.
- W3035552617 hasRelatedWork W2552392178 @default.
- W3035552617 hasRelatedWork W2570653565 @default.
- W3035552617 hasRelatedWork W2750336339 @default.
- W3035552617 hasRelatedWork W2900628670 @default.
- W3035552617 hasRelatedWork W2930736969 @default.
- W3035552617 hasRelatedWork W2962736195 @default.
- W3035552617 hasRelatedWork W3037510039 @default.
- W3035552617 hasRelatedWork W3099735866 @default.
- W3035552617 hasRelatedWork W3102136428 @default.
- W3035552617 hasRelatedWork W618165386 @default.
- W3035552617 hasRelatedWork W2165776452 @default.
- W3035552617 hasRelatedWork W2200264387 @default.
- W3035552617 isParatext "false" @default.
- W3035552617 isRetracted "false" @default.
- W3035552617 magId "3035552617" @default.
- W3035552617 workType "article" @default.