Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035590987> ?p ?o ?g. }
- W3035590987 abstract "Attribute recognition is a crucial but challenging task due to viewpoint changes, illumination variations and appearance diversities, etc. Most of previous work only consider the attribute-level feature embedding, which might perform poorly in complicated heterogeneous conditions. To address this problem, we propose a hierarchical feature embedding (HFE) framework, which learns a fine-grained feature embedding by combining attribute and ID information. In HFE, we maintain the inter-class and intra-class feature embedding simultaneously. Not only samples with the same attribute but also samples with the same ID are gathered more closely, which could restrict the feature embedding of visually hard samples with regard to attributes and improve the robustness to variant conditions. We establish this hierarchical structure by utilizing HFE loss consisted of attribute-level and ID-level constraints. We also introduce an absolute boundary regularization and a dynamic loss weight as supplementary components to help build up the feature embedding. Experiments show that our method achieves the state-of-the-art results on two pedestrian attribute datasets and a facial attribute dataset." @default.
- W3035590987 created "2020-06-19" @default.
- W3035590987 creator A5000981879 @default.
- W3035590987 creator A5027254893 @default.
- W3035590987 creator A5032006890 @default.
- W3035590987 creator A5040647242 @default.
- W3035590987 creator A5055122851 @default.
- W3035590987 creator A5072139431 @default.
- W3035590987 creator A5081689677 @default.
- W3035590987 date "2020-06-01" @default.
- W3035590987 modified "2023-09-26" @default.
- W3035590987 title "Hierarchical Feature Embedding for Attribute Recognition" @default.
- W3035590987 cites W1599238028 @default.
- W3035590987 cites W1834627138 @default.
- W3035590987 cites W1887734902 @default.
- W3035590987 cites W1928419358 @default.
- W3035590987 cites W1967988963 @default.
- W3035590987 cites W1975517671 @default.
- W3035590987 cites W2061683433 @default.
- W3035590987 cites W2111025459 @default.
- W3035590987 cites W2133444763 @default.
- W3035590987 cites W2135442311 @default.
- W3035590987 cites W2138621090 @default.
- W3035590987 cites W2145287260 @default.
- W3035590987 cites W2157364932 @default.
- W3035590987 cites W2204750386 @default.
- W3035590987 cites W2286727787 @default.
- W3035590987 cites W2440599146 @default.
- W3035590987 cites W2519809734 @default.
- W3035590987 cites W2536626143 @default.
- W3035590987 cites W2550374311 @default.
- W3035590987 cites W2585635281 @default.
- W3035590987 cites W2604463754 @default.
- W3035590987 cites W2606377603 @default.
- W3035590987 cites W2737106217 @default.
- W3035590987 cites W2807735086 @default.
- W3035590987 cites W2808154247 @default.
- W3035590987 cites W2867270703 @default.
- W3035590987 cites W2893222040 @default.
- W3035590987 cites W2896632102 @default.
- W3035590987 cites W2963180826 @default.
- W3035590987 cites W2963212406 @default.
- W3035590987 cites W2963351448 @default.
- W3035590987 cites W2963365374 @default.
- W3035590987 cites W2963466847 @default.
- W3035590987 cites W2963592586 @default.
- W3035590987 cites W2963721945 @default.
- W3035590987 cites W2986999591 @default.
- W3035590987 cites W2990827756 @default.
- W3035590987 cites W3004061291 @default.
- W3035590987 cites W3010512657 @default.
- W3035590987 cites W3099206234 @default.
- W3035590987 cites W3103850820 @default.
- W3035590987 cites W4210880854 @default.
- W3035590987 doi "https://doi.org/10.1109/cvpr42600.2020.01307" @default.
- W3035590987 hasPublicationYear "2020" @default.
- W3035590987 type Work @default.
- W3035590987 sameAs 3035590987 @default.
- W3035590987 citedByCount "29" @default.
- W3035590987 countsByYear W30355909872019 @default.
- W3035590987 countsByYear W30355909872020 @default.
- W3035590987 countsByYear W30355909872021 @default.
- W3035590987 countsByYear W30355909872022 @default.
- W3035590987 countsByYear W30355909872023 @default.
- W3035590987 crossrefType "proceedings-article" @default.
- W3035590987 hasAuthorship W3035590987A5000981879 @default.
- W3035590987 hasAuthorship W3035590987A5027254893 @default.
- W3035590987 hasAuthorship W3035590987A5032006890 @default.
- W3035590987 hasAuthorship W3035590987A5040647242 @default.
- W3035590987 hasAuthorship W3035590987A5055122851 @default.
- W3035590987 hasAuthorship W3035590987A5072139431 @default.
- W3035590987 hasAuthorship W3035590987A5081689677 @default.
- W3035590987 hasBestOaLocation W30355909872 @default.
- W3035590987 hasConcept C104317684 @default.
- W3035590987 hasConcept C138885662 @default.
- W3035590987 hasConcept C153180895 @default.
- W3035590987 hasConcept C154945302 @default.
- W3035590987 hasConcept C185592680 @default.
- W3035590987 hasConcept C2776135515 @default.
- W3035590987 hasConcept C2776401178 @default.
- W3035590987 hasConcept C2777212361 @default.
- W3035590987 hasConcept C41008148 @default.
- W3035590987 hasConcept C41608201 @default.
- W3035590987 hasConcept C41895202 @default.
- W3035590987 hasConcept C52622490 @default.
- W3035590987 hasConcept C55493867 @default.
- W3035590987 hasConcept C63479239 @default.
- W3035590987 hasConcept C83665646 @default.
- W3035590987 hasConceptScore W3035590987C104317684 @default.
- W3035590987 hasConceptScore W3035590987C138885662 @default.
- W3035590987 hasConceptScore W3035590987C153180895 @default.
- W3035590987 hasConceptScore W3035590987C154945302 @default.
- W3035590987 hasConceptScore W3035590987C185592680 @default.
- W3035590987 hasConceptScore W3035590987C2776135515 @default.
- W3035590987 hasConceptScore W3035590987C2776401178 @default.
- W3035590987 hasConceptScore W3035590987C2777212361 @default.
- W3035590987 hasConceptScore W3035590987C41008148 @default.
- W3035590987 hasConceptScore W3035590987C41608201 @default.
- W3035590987 hasConceptScore W3035590987C41895202 @default.
- W3035590987 hasConceptScore W3035590987C52622490 @default.