Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035614624> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3035614624 endingPage "134" @default.
- W3035614624 startingPage "126" @default.
- W3035614624 abstract "Semantic segmentation of point cloud is a fundamental problem in scene-level understanding. Despite advancement in recent years by leveraging capabilities of Neural Networks and massive labeling datasets available, providing fine-grained semantic segmentation for point cloud is still challenging, given the fact that point cloud is usually unstructured, unordered and sparse. In this paper, we achieve semantic point cloud labeling by adaptively exploring semantic relation and aggregating contextual information between points. Specifically, we first introduce an attention-based local relation learning module for collecting local features, which can capture semantic relation in a manner of anisotropy. And we then design a novel context aggregation module guided by multi-scale supervision to obtain long-range dependencies between semantically-correlated points and enhance the distinctive ability of points in feature space. In addition, a gated propagation strategy is adopted instead of skip links to conditionally concatenate local point features in different layers. We empirically evaluate our method on public benchmarks (S3DIS and ShapeNetPart), and demonstrate our performance is on par or better than state-of-the-art methods." @default.
- W3035614624 created "2020-06-19" @default.
- W3035614624 creator A5011206060 @default.
- W3035614624 creator A5028699862 @default.
- W3035614624 creator A5063211322 @default.
- W3035614624 creator A5065912071 @default.
- W3035614624 date "2020-08-01" @default.
- W3035614624 modified "2023-09-27" @default.
- W3035614624 title "Attention-based relation and context modeling for point cloud semantic segmentation" @default.
- W3035614624 cites W2914234035 @default.
- W3035614624 cites W2979750740 @default.
- W3035614624 cites W3186139152 @default.
- W3035614624 doi "https://doi.org/10.1016/j.cag.2020.06.001" @default.
- W3035614624 hasPublicationYear "2020" @default.
- W3035614624 type Work @default.
- W3035614624 sameAs 3035614624 @default.
- W3035614624 citedByCount "17" @default.
- W3035614624 countsByYear W30356146242020 @default.
- W3035614624 countsByYear W30356146242021 @default.
- W3035614624 countsByYear W30356146242022 @default.
- W3035614624 countsByYear W30356146242023 @default.
- W3035614624 crossrefType "journal-article" @default.
- W3035614624 hasAuthorship W3035614624A5011206060 @default.
- W3035614624 hasAuthorship W3035614624A5028699862 @default.
- W3035614624 hasAuthorship W3035614624A5063211322 @default.
- W3035614624 hasAuthorship W3035614624A5065912071 @default.
- W3035614624 hasConcept C111919701 @default.
- W3035614624 hasConcept C124101348 @default.
- W3035614624 hasConcept C131979681 @default.
- W3035614624 hasConcept C138885662 @default.
- W3035614624 hasConcept C151730666 @default.
- W3035614624 hasConcept C154945302 @default.
- W3035614624 hasConcept C184337299 @default.
- W3035614624 hasConcept C199360897 @default.
- W3035614624 hasConcept C23123220 @default.
- W3035614624 hasConcept C2524010 @default.
- W3035614624 hasConcept C25343380 @default.
- W3035614624 hasConcept C2776401178 @default.
- W3035614624 hasConcept C2779343474 @default.
- W3035614624 hasConcept C28719098 @default.
- W3035614624 hasConcept C33923547 @default.
- W3035614624 hasConcept C41008148 @default.
- W3035614624 hasConcept C41895202 @default.
- W3035614624 hasConcept C79974875 @default.
- W3035614624 hasConcept C86803240 @default.
- W3035614624 hasConcept C89600930 @default.
- W3035614624 hasConceptScore W3035614624C111919701 @default.
- W3035614624 hasConceptScore W3035614624C124101348 @default.
- W3035614624 hasConceptScore W3035614624C131979681 @default.
- W3035614624 hasConceptScore W3035614624C138885662 @default.
- W3035614624 hasConceptScore W3035614624C151730666 @default.
- W3035614624 hasConceptScore W3035614624C154945302 @default.
- W3035614624 hasConceptScore W3035614624C184337299 @default.
- W3035614624 hasConceptScore W3035614624C199360897 @default.
- W3035614624 hasConceptScore W3035614624C23123220 @default.
- W3035614624 hasConceptScore W3035614624C2524010 @default.
- W3035614624 hasConceptScore W3035614624C25343380 @default.
- W3035614624 hasConceptScore W3035614624C2776401178 @default.
- W3035614624 hasConceptScore W3035614624C2779343474 @default.
- W3035614624 hasConceptScore W3035614624C28719098 @default.
- W3035614624 hasConceptScore W3035614624C33923547 @default.
- W3035614624 hasConceptScore W3035614624C41008148 @default.
- W3035614624 hasConceptScore W3035614624C41895202 @default.
- W3035614624 hasConceptScore W3035614624C79974875 @default.
- W3035614624 hasConceptScore W3035614624C86803240 @default.
- W3035614624 hasConceptScore W3035614624C89600930 @default.
- W3035614624 hasFunder F4320306076 @default.
- W3035614624 hasFunder F4320321001 @default.
- W3035614624 hasFunder F4320335482 @default.
- W3035614624 hasLocation W30356146241 @default.
- W3035614624 hasOpenAccess W3035614624 @default.
- W3035614624 hasPrimaryLocation W30356146241 @default.
- W3035614624 hasRelatedWork W2902333684 @default.
- W3035614624 hasRelatedWork W2917062864 @default.
- W3035614624 hasRelatedWork W2959771705 @default.
- W3035614624 hasRelatedWork W2963719070 @default.
- W3035614624 hasRelatedWork W3015465855 @default.
- W3035614624 hasRelatedWork W3108464240 @default.
- W3035614624 hasRelatedWork W3156242644 @default.
- W3035614624 hasRelatedWork W4287108475 @default.
- W3035614624 hasRelatedWork W4302587079 @default.
- W3035614624 hasRelatedWork W4310007291 @default.
- W3035614624 hasVolume "90" @default.
- W3035614624 isParatext "false" @default.
- W3035614624 isRetracted "false" @default.
- W3035614624 magId "3035614624" @default.
- W3035614624 workType "article" @default.