Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035654314> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3035654314 abstract "The place of research collaborations is indispensable in coming up with research publications. The task of detecting similar research areas is crucial to the developmentand furtherance of research. Prominent and rookie researchers alike are predisposed to seek existing research publications in a research field of interest before coming up with a thesis. The manual process of searching out individuals in an already existing research techniques which do not sufficiently capture the implicit semantics of keywords thereby leaving out some research articles. In this work, we have proposed a similar research areadetection framework to address this problem. The aim of this study is to develop a semantics-based clustering method for similar research area detection. This studyemploys a number of techniques such as Ontology-based pre-processing, Latent Semantic.Indexing and K-Means Clustering to develop a prototype similar research area detectionsystem, that can be used to determine similar research domain publications. However, traditional document clustering techniques suffer from high dimensionality and data sparsity problems. In a bid to solve these problems, a domain ontology is used in the preprocessing stage to weight concepts and determine semantically similar concepts,while Latent Semantic Analysis is used as the topic modelling technique in order to capture the implicit semantic relationship between terms in the text corpus. To test our framework, publications from a number of Nigerian University faculties were randomly selected and used as the dataset for our clustering model. A proof-of-conceptimplementation was developed using the Python programming language. From the evaluation of our system, we were able to derive more accurate clustering results as a result of the integration of ontologies in the pre-processing stage in comparison with documents that were not pre-processed with the ontology. field is cumbersome and time-consuming. Besides, it tends to not capture publications with keywords that do not match a keyword query which results in inaccurate results. From extant literature, automated similar research area detection systems have beendeveloped to solve this problem. However, most of them use keyword matching techniques which do not sufficiently capture the implicit semantics of keywords therebyleaving out some research articles. In this work, we have proposed a similar research area detection framework to address this problem. The aim of this study is to develop asemantics-based clustering method for similar research area detection. This study employs a number of techniques such as Ontology-based pre-processing, Latent SemanticIndexing and K-Means Clustering to develop a prototype similar research area detectionsystem, that can be used to determine similar research domain publications. However,traditional document clustering techniques suffer from high dimensionality and data sparsity problems. In a bid to solve these problems, a domain ontology is used in thepreprocessing stage to weight concepts and determine semantically similar concepts, while Latent Semantic Analysis is used as the topic modelling technique in order to capture the implicit semantic relationship between terms in the text corpus. To test our framework, publications from a number of Nigerian University faculties were randomlyselected and used as the dataset for our clustering model. A proof-of-concept implementation was developed using the Python programming language. From the evaluation of our system, we were able to derive more accurate clustering results as a result of the integration of ontologies in the pre-processing stage in comparison with documents that were not pre-processed with the ontology." @default.
- W3035654314 created "2020-06-19" @default.
- W3035654314 creator A5034025866 @default.
- W3035654314 date "2018-06-01" @default.
- W3035654314 modified "2023-09-24" @default.
- W3035654314 title "A SEMANTICS-BASED CLUSTERING APPROACH FOR SIMILAR RESEARCH AREA DETECTION: A CASE STUDY OF NIGERIAN UNIVERSITIES" @default.
- W3035654314 hasPublicationYear "2018" @default.
- W3035654314 type Work @default.
- W3035654314 sameAs 3035654314 @default.
- W3035654314 citedByCount "0" @default.
- W3035654314 crossrefType "dissertation" @default.
- W3035654314 hasAuthorship W3035654314A5034025866 @default.
- W3035654314 hasConcept C111472728 @default.
- W3035654314 hasConcept C124101348 @default.
- W3035654314 hasConcept C134306372 @default.
- W3035654314 hasConcept C138885662 @default.
- W3035654314 hasConcept C154945302 @default.
- W3035654314 hasConcept C184337299 @default.
- W3035654314 hasConcept C199360897 @default.
- W3035654314 hasConcept C204321447 @default.
- W3035654314 hasConcept C23123220 @default.
- W3035654314 hasConcept C2522767166 @default.
- W3035654314 hasConcept C25810664 @default.
- W3035654314 hasConcept C33923547 @default.
- W3035654314 hasConcept C34736171 @default.
- W3035654314 hasConcept C36503486 @default.
- W3035654314 hasConcept C41008148 @default.
- W3035654314 hasConcept C73555534 @default.
- W3035654314 hasConceptScore W3035654314C111472728 @default.
- W3035654314 hasConceptScore W3035654314C124101348 @default.
- W3035654314 hasConceptScore W3035654314C134306372 @default.
- W3035654314 hasConceptScore W3035654314C138885662 @default.
- W3035654314 hasConceptScore W3035654314C154945302 @default.
- W3035654314 hasConceptScore W3035654314C184337299 @default.
- W3035654314 hasConceptScore W3035654314C199360897 @default.
- W3035654314 hasConceptScore W3035654314C204321447 @default.
- W3035654314 hasConceptScore W3035654314C23123220 @default.
- W3035654314 hasConceptScore W3035654314C2522767166 @default.
- W3035654314 hasConceptScore W3035654314C25810664 @default.
- W3035654314 hasConceptScore W3035654314C33923547 @default.
- W3035654314 hasConceptScore W3035654314C34736171 @default.
- W3035654314 hasConceptScore W3035654314C36503486 @default.
- W3035654314 hasConceptScore W3035654314C41008148 @default.
- W3035654314 hasConceptScore W3035654314C73555534 @default.
- W3035654314 hasLocation W30356543141 @default.
- W3035654314 hasOpenAccess W3035654314 @default.
- W3035654314 hasPrimaryLocation W30356543141 @default.
- W3035654314 hasRelatedWork W137063017 @default.
- W3035654314 hasRelatedWork W2109144580 @default.
- W3035654314 hasRelatedWork W2135330499 @default.
- W3035654314 hasRelatedWork W2162591772 @default.
- W3035654314 hasRelatedWork W2280871258 @default.
- W3035654314 hasRelatedWork W2298397036 @default.
- W3035654314 hasRelatedWork W2557826550 @default.
- W3035654314 hasRelatedWork W2761465752 @default.
- W3035654314 hasRelatedWork W2767640994 @default.
- W3035654314 hasRelatedWork W2904356522 @default.
- W3035654314 hasRelatedWork W2953522689 @default.
- W3035654314 hasRelatedWork W3097678679 @default.
- W3035654314 hasRelatedWork W3107527972 @default.
- W3035654314 hasRelatedWork W3128068256 @default.
- W3035654314 hasRelatedWork W3213987350 @default.
- W3035654314 hasRelatedWork W874670514 @default.
- W3035654314 hasRelatedWork W897062481 @default.
- W3035654314 hasRelatedWork W9753090 @default.
- W3035654314 hasRelatedWork W1187248933 @default.
- W3035654314 hasRelatedWork W3185824387 @default.
- W3035654314 isParatext "false" @default.
- W3035654314 isRetracted "false" @default.
- W3035654314 magId "3035654314" @default.
- W3035654314 workType "dissertation" @default.