Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035667694> ?p ?o ?g. }
- W3035667694 abstract "Petroleum is non-renewable and contributes to environmental pollution, thus bio-oil can be substituted as a potential alternative. However, bio-oil in its crude form cannot be used directly as fuel since it contains a high proportion of oxygenated, acidic and reactive compounds such as carboxylic acids. These are known to cause corrosion of vessels and pipework, instability and phase separation. The oxygen content of bio-oil can be reduced through hydrodeoxygenation of oxygenated compounds. In this study, the hydrogenation of short chain (C2-C4) carboxylic acids typical of model compounds present in bio-oil was investigated using commercial Pt supported on Al2O3, SiO2, carbon and graphite, and prepared Pt and Pt-Re on TiO2 catalysts. This study reports the preparation of 4% Pt/TiO2 and 4% Pt-4%Re/TiO2 catalysts for alcohol production, which were screened against their commercial counterparts, the reaction space explored in the following ranges temperature 80-200 °C, pressure 10-40 bar, time 1-4 h, catalyst 0.1-0.4 g and stirring speed 400-1000 min-1 using 4%Pt/TiO2, and kinetic modelling of acetic acid hydrogenation.The catalysts were characterized using Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), Scanning electron microscopy (SEM), H2-Temperature Programmed Reduction (H2-TPR) and NH3-Temperature Programmed Desorption (NH3-TPD) techniques. BET analysis showed features of Type IV isotherm with Type 3 hysteresis for 4% Pt/TiO2, 4% Pt-4%Re/TiO2, 4% Pt/SiO2 and 5% Pt/graphite; in contrast, 5% Pt/C and 5% Pt/Al2O3 exhibited Type 2 hysteresis. Further, both commercial and synthesized catalysts are mesoporous. The XRD peaks present in 4% Pt/TiO2 and 4% Pt-4%Re/TiO2 were found to be rutile and anatase phases of TiO2 only. The incorporation of Pt and Re into TiO2 occupied more rutile than anatase phases. Catalyst morphology of spent 4% Pt/TiO2 and 4% Pt-4%Re/TiO2 showed the formation of compact mass and agglomerates after three reuse cycles. NH3-TPD analysis showed that 4%Pt/TiO2 had the highest acidity (0.48 mmol g-1) which favoured esterification reaction. Catalyst screening showed that 4% Pt/TiO2 and 4% Pt-4%Re/TiO2 outperformed the commercial catalysts, and favoured the production of ethyl acetate and ethanol respectively. Consequently, the production of alcohol over 4% Pt-4%Re/TiO2 increased with increasing Re loading from 1 to 4%. The achieved optimum conditions were 200 °C, 40 bar, 4 h, 0.4 g and 1000 min-1 for acetic acid conversion, and 160 c, 40 bar, 4 h, 0.4 g and 1000 min-1 for ethanol production. The hydrogenation of C2-C4 acids over 4% Pt/TiO2 and 4% Pt-4%Re/TiO2 as single acid feed showed that an increase in the molecular weight of the carboxylic acid from acetic to butanoic acid enhanced the selectivity towards the respective alcohol which can be summarized: butanol > propanol > ethanol. Conversely, ester selectivity is as follows: ethyl acetate > propyl propionate > butyl butyrate. The selectivity to alcohol decreased as the reaction temperature increases from 145 to 200 °C. Higher alcohol selectivities were achieved over 4% Pt-4%Re/TiO2 in all cases. The investigation of acids in a mixed acid feed system over 4% Pt/TiO2 showed that higher alcohol selectivity was attained compared to the single feed system. On the other hand, the conversion of propanoic and butanoic acids in the mixture containing acetic acid dropped from 94 to 77% and 88.2 to 70% respectively. The presence of acetic acid in the mixed feed inhibited the other acids due to competitive effect but favoured higher alcohol selectivity.Reaction kinetics of acetic acid hydrogenation was investigated using catalyst particle sizes < 65 μm and a stirring speed of 1000 min-1 at which negligible internal and external mass transfer resistances were experienced. The reaction order with respect to acetic acid and hydrogen were found to be 0.78 and 0.35 respectively, which indicated fractional order kinetics. Hence, the experimental data was fitted with a Langmuir-Hinshelwood model for dissociative H2 adsorption. The activation energy and pre-exponential factor were found to be 80.6 kJ mol-1 and 4.6 ×10-7 kmol.kgcat-1.min-1 respectively.Finally, 4% Pt/TiO2 catalyst favours the production of esters and alcohols from the hydrogenation of short chain carboxylic acids (C2-C4) in single and multiple feed systems. However, the addition of Re to form bimetallic catalyst (4% Pt-4%Re/TiO2) further increased the selectivity towards alcohols while maintaining a high acid conversion. Furthermore, the reaction kinetics of acetic acid using 4% Pt/TiO2 catalyst was adequately described using a model that assumes a dissociative adsorption of hydrogen." @default.
- W3035667694 created "2020-06-19" @default.
- W3035667694 creator A5057864058 @default.
- W3035667694 date "2019-12-10" @default.
- W3035667694 modified "2023-09-27" @default.
- W3035667694 title "Catalytic upgrading of bio-oil via the hydrodeoxygenation of short chain carboxylic acids" @default.
- W3035667694 cites W133758108 @default.
- W3035667694 cites W1480859926 @default.
- W3035667694 cites W1489191430 @default.
- W3035667694 cites W1502955493 @default.
- W3035667694 cites W1575710884 @default.
- W3035667694 cites W1577383144 @default.
- W3035667694 cites W1609943515 @default.
- W3035667694 cites W1685126532 @default.
- W3035667694 cites W1825489262 @default.
- W3035667694 cites W1910262408 @default.
- W3035667694 cites W1964804197 @default.
- W3035667694 cites W1967432449 @default.
- W3035667694 cites W1967697443 @default.
- W3035667694 cites W1970648125 @default.
- W3035667694 cites W1975087764 @default.
- W3035667694 cites W1976304562 @default.
- W3035667694 cites W1976358120 @default.
- W3035667694 cites W1979927457 @default.
- W3035667694 cites W1980038618 @default.
- W3035667694 cites W1980495684 @default.
- W3035667694 cites W1982678329 @default.
- W3035667694 cites W1983080679 @default.
- W3035667694 cites W1988960968 @default.
- W3035667694 cites W1994634352 @default.
- W3035667694 cites W1994769213 @default.
- W3035667694 cites W1995474291 @default.
- W3035667694 cites W1995675037 @default.
- W3035667694 cites W1996863508 @default.
- W3035667694 cites W1998166518 @default.
- W3035667694 cites W2000105907 @default.
- W3035667694 cites W2000751776 @default.
- W3035667694 cites W2002103378 @default.
- W3035667694 cites W2002785050 @default.
- W3035667694 cites W2004849275 @default.
- W3035667694 cites W2005634799 @default.
- W3035667694 cites W2006697780 @default.
- W3035667694 cites W2007754659 @default.
- W3035667694 cites W2008900726 @default.
- W3035667694 cites W2010989311 @default.
- W3035667694 cites W2011173061 @default.
- W3035667694 cites W2011382134 @default.
- W3035667694 cites W2012018787 @default.
- W3035667694 cites W2012255399 @default.
- W3035667694 cites W2012781889 @default.
- W3035667694 cites W2015846099 @default.
- W3035667694 cites W2016424453 @default.
- W3035667694 cites W2017065277 @default.
- W3035667694 cites W2017246158 @default.
- W3035667694 cites W2017666741 @default.
- W3035667694 cites W2017753602 @default.
- W3035667694 cites W2018087584 @default.
- W3035667694 cites W2018149296 @default.
- W3035667694 cites W2019372597 @default.
- W3035667694 cites W2021432654 @default.
- W3035667694 cites W2021804065 @default.
- W3035667694 cites W2022458510 @default.
- W3035667694 cites W2022793163 @default.
- W3035667694 cites W2024993626 @default.
- W3035667694 cites W2028922089 @default.
- W3035667694 cites W2030706248 @default.
- W3035667694 cites W2031894462 @default.
- W3035667694 cites W2032813423 @default.
- W3035667694 cites W2035984142 @default.
- W3035667694 cites W2038836395 @default.
- W3035667694 cites W2039893339 @default.
- W3035667694 cites W2040794444 @default.
- W3035667694 cites W2041716134 @default.
- W3035667694 cites W2043760303 @default.
- W3035667694 cites W2044149444 @default.
- W3035667694 cites W2045044994 @default.
- W3035667694 cites W2045636254 @default.
- W3035667694 cites W2046695036 @default.
- W3035667694 cites W2048546472 @default.
- W3035667694 cites W2048685611 @default.
- W3035667694 cites W2052202097 @default.
- W3035667694 cites W2052631178 @default.
- W3035667694 cites W2058291570 @default.
- W3035667694 cites W2058626490 @default.
- W3035667694 cites W2060396413 @default.
- W3035667694 cites W2061108654 @default.
- W3035667694 cites W2062648956 @default.
- W3035667694 cites W2062999537 @default.
- W3035667694 cites W2063564317 @default.
- W3035667694 cites W2064391336 @default.
- W3035667694 cites W2066543080 @default.
- W3035667694 cites W2066882971 @default.
- W3035667694 cites W2067160339 @default.
- W3035667694 cites W2069072271 @default.
- W3035667694 cites W2072033565 @default.
- W3035667694 cites W2073147877 @default.
- W3035667694 cites W2074940954 @default.
- W3035667694 cites W2075667634 @default.
- W3035667694 cites W2077783350 @default.
- W3035667694 cites W2079344472 @default.