Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035690502> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3035690502 endingPage "246" @default.
- W3035690502 startingPage "217" @default.
- W3035690502 abstract "Abstract Electromagnetic wave scattering phenomena for target identification are important in many applications related to fundamental science and engineering. Here, we present an analytical formulation for the calculation of the magnetic and electric fields that scatter off a highly conductive ellipsoidal body, located within an otherwise homogeneous and isotropic lossless medium. The primary excitation source assumes a time‐harmonic magnetic dipole, precisely fixed and arbitrarily orientated that operates at low frequencies and produces the incident fields. The scattering problem itself is modeled with respect to rigorous expansions of the electromagnetic fields at the low‐frequency regime in terms of positive integral powers of the real wave number of the ambient. Obviously, the Rayleigh static term and a few dynamic terms are sufficient for the purpose of the present work, as the additional terms are neglected due to their minor contribution. Therein, the classical Maxwell's theory is suitably modified, leading to intertwined either Laplace's or Poisson's equations, accompanied by the impenetrable boundary conditions for the total fields and the limiting behavior at infinity. On the other hand, the complete spatial anisotropy of the three‐dimensional space is secured via the introduction of the genuine ellipsoidal coordinate system, being appropriate for tackling incrementally such scattering boundary value problems. The nonaxisymmetric fields are obtained via infinite series expansions in terms of ellipsoidal harmonic eigenfunctions, providing handy closed‐form solutions in a compact fashion, whose validity is verified by a straightforward reduction to simpler geometries of the metal object. The main idea is to demonstrate an efficient methodology, according to which the constructed analytical formulae can offer the appropriate environment for a fast numerical estimation of the scattered electromagnetic fields that could be useful for real data inversion." @default.
- W3035690502 created "2020-06-19" @default.
- W3035690502 creator A5037485520 @default.
- W3035690502 date "2020-06-10" @default.
- W3035690502 modified "2023-09-27" @default.
- W3035690502 title "Low‐frequency dipolar electromagnetic scattering by a solid ellipsoid in lossless environment" @default.
- W3035690502 cites W1220105653 @default.
- W3035690502 cites W1634312940 @default.
- W3035690502 cites W1983451817 @default.
- W3035690502 cites W1991877514 @default.
- W3035690502 cites W1996660954 @default.
- W3035690502 cites W1997338157 @default.
- W3035690502 cites W2016238693 @default.
- W3035690502 cites W2016606018 @default.
- W3035690502 cites W2016819005 @default.
- W3035690502 cites W2019564466 @default.
- W3035690502 cites W2026111933 @default.
- W3035690502 cites W2042123331 @default.
- W3035690502 cites W2047858822 @default.
- W3035690502 cites W2063481454 @default.
- W3035690502 cites W2065533113 @default.
- W3035690502 cites W2088285742 @default.
- W3035690502 cites W2145910283 @default.
- W3035690502 cites W2155682659 @default.
- W3035690502 cites W2258716920 @default.
- W3035690502 cites W2397342459 @default.
- W3035690502 cites W2767486269 @default.
- W3035690502 cites W2799435916 @default.
- W3035690502 cites W4231545543 @default.
- W3035690502 cites W4239940917 @default.
- W3035690502 doi "https://doi.org/10.1111/sapm.12318" @default.
- W3035690502 hasPublicationYear "2020" @default.
- W3035690502 type Work @default.
- W3035690502 sameAs 3035690502 @default.
- W3035690502 citedByCount "0" @default.
- W3035690502 crossrefType "journal-article" @default.
- W3035690502 hasAuthorship W3035690502A5037485520 @default.
- W3035690502 hasConcept C121332964 @default.
- W3035690502 hasConcept C134306372 @default.
- W3035690502 hasConcept C182310444 @default.
- W3035690502 hasConcept C191486275 @default.
- W3035690502 hasConcept C28843909 @default.
- W3035690502 hasConcept C33923547 @default.
- W3035690502 hasConcept C62520636 @default.
- W3035690502 hasConcept C74650414 @default.
- W3035690502 hasConceptScore W3035690502C121332964 @default.
- W3035690502 hasConceptScore W3035690502C134306372 @default.
- W3035690502 hasConceptScore W3035690502C182310444 @default.
- W3035690502 hasConceptScore W3035690502C191486275 @default.
- W3035690502 hasConceptScore W3035690502C28843909 @default.
- W3035690502 hasConceptScore W3035690502C33923547 @default.
- W3035690502 hasConceptScore W3035690502C62520636 @default.
- W3035690502 hasConceptScore W3035690502C74650414 @default.
- W3035690502 hasIssue "2" @default.
- W3035690502 hasLocation W30356905021 @default.
- W3035690502 hasOpenAccess W3035690502 @default.
- W3035690502 hasPrimaryLocation W30356905021 @default.
- W3035690502 hasRelatedWork W1597420886 @default.
- W3035690502 hasRelatedWork W2028690217 @default.
- W3035690502 hasRelatedWork W2080405237 @default.
- W3035690502 hasRelatedWork W2122040273 @default.
- W3035690502 hasRelatedWork W2124696720 @default.
- W3035690502 hasRelatedWork W2910133962 @default.
- W3035690502 hasRelatedWork W2912679009 @default.
- W3035690502 hasRelatedWork W3128714934 @default.
- W3035690502 hasRelatedWork W4312762645 @default.
- W3035690502 hasRelatedWork W4380629835 @default.
- W3035690502 hasVolume "145" @default.
- W3035690502 isParatext "false" @default.
- W3035690502 isRetracted "false" @default.
- W3035690502 magId "3035690502" @default.
- W3035690502 workType "article" @default.