Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035776964> ?p ?o ?g. }
- W3035776964 endingPage "17" @default.
- W3035776964 startingPage "1" @default.
- W3035776964 abstract "Signed distance fields (SDFs) are a popular shape representation for collision detection. This is due to their query efficiency, and the ability to provide robust inside/outside information. Although it is straightforward to test points for interpenetration with an SDF, it is not clear how to extend this to continuous surfaces, such as triangle meshes. In this paper, we propose a per-element local optimization to find the closest points between the SDF isosurface and mesh elements. This allows us to generate accurate contact points between sharp point-face pairs, and handle smoothly varying edge-edge contact. We compare three numerical methods for solving the local optimization problem: projected gradient descent, Frank-Wolfe, and golden-section search. Finally, we demonstrate the applicability of our method to a wide range of scenarios including collision of simulated cloth, rigid bodies, and deformable solids." @default.
- W3035776964 created "2020-06-25" @default.
- W3035776964 creator A5003132163 @default.
- W3035776964 creator A5005687057 @default.
- W3035776964 creator A5032370229 @default.
- W3035776964 creator A5032952197 @default.
- W3035776964 creator A5039465110 @default.
- W3035776964 creator A5067096277 @default.
- W3035776964 date "2020-04-18" @default.
- W3035776964 modified "2023-10-16" @default.
- W3035776964 title "Local Optimization for Robust Signed Distance Field Collision" @default.
- W3035776964 cites W1976986327 @default.
- W3035776964 cites W1993244675 @default.
- W3035776964 cites W2043528569 @default.
- W3035776964 cites W2048637195 @default.
- W3035776964 cites W2059676477 @default.
- W3035776964 cites W2086210210 @default.
- W3035776964 cites W2092072871 @default.
- W3035776964 cites W2103262115 @default.
- W3035776964 cites W2103459249 @default.
- W3035776964 cites W2124486569 @default.
- W3035776964 cites W2127794343 @default.
- W3035776964 cites W2132836675 @default.
- W3035776964 cites W2134158653 @default.
- W3035776964 cites W2143101939 @default.
- W3035776964 cites W2151092778 @default.
- W3035776964 cites W2156410578 @default.
- W3035776964 cites W2159142102 @default.
- W3035776964 cites W2166316739 @default.
- W3035776964 cites W2244686166 @default.
- W3035776964 cites W2264885058 @default.
- W3035776964 cites W2475120973 @default.
- W3035776964 cites W2530006557 @default.
- W3035776964 cites W2781859200 @default.
- W3035776964 cites W2810395763 @default.
- W3035776964 cites W2982955716 @default.
- W3035776964 cites W3003958395 @default.
- W3035776964 cites W3138143451 @default.
- W3035776964 cites W4229525926 @default.
- W3035776964 doi "https://doi.org/10.1145/3384538" @default.
- W3035776964 hasPublicationYear "2020" @default.
- W3035776964 type Work @default.
- W3035776964 sameAs 3035776964 @default.
- W3035776964 citedByCount "25" @default.
- W3035776964 countsByYear W30357769642021 @default.
- W3035776964 countsByYear W30357769642022 @default.
- W3035776964 countsByYear W30357769642023 @default.
- W3035776964 crossrefType "journal-article" @default.
- W3035776964 hasAuthorship W3035776964A5003132163 @default.
- W3035776964 hasAuthorship W3035776964A5005687057 @default.
- W3035776964 hasAuthorship W3035776964A5032370229 @default.
- W3035776964 hasAuthorship W3035776964A5032952197 @default.
- W3035776964 hasAuthorship W3035776964A5039465110 @default.
- W3035776964 hasAuthorship W3035776964A5067096277 @default.
- W3035776964 hasConcept C11413529 @default.
- W3035776964 hasConcept C121332964 @default.
- W3035776964 hasConcept C121704057 @default.
- W3035776964 hasConcept C144024400 @default.
- W3035776964 hasConcept C153258448 @default.
- W3035776964 hasConcept C153294291 @default.
- W3035776964 hasConcept C154945302 @default.
- W3035776964 hasConcept C159985019 @default.
- W3035776964 hasConcept C162307627 @default.
- W3035776964 hasConcept C17744445 @default.
- W3035776964 hasConcept C192562407 @default.
- W3035776964 hasConcept C199539241 @default.
- W3035776964 hasConcept C204323151 @default.
- W3035776964 hasConcept C2524010 @default.
- W3035776964 hasConcept C2776359362 @default.
- W3035776964 hasConcept C2776637919 @default.
- W3035776964 hasConcept C2779304628 @default.
- W3035776964 hasConcept C28719098 @default.
- W3035776964 hasConcept C31487907 @default.
- W3035776964 hasConcept C33923547 @default.
- W3035776964 hasConcept C36289849 @default.
- W3035776964 hasConcept C36464697 @default.
- W3035776964 hasConcept C38652104 @default.
- W3035776964 hasConcept C41008148 @default.
- W3035776964 hasConcept C45107383 @default.
- W3035776964 hasConcept C50644808 @default.
- W3035776964 hasConcept C71169176 @default.
- W3035776964 hasConcept C94625758 @default.
- W3035776964 hasConceptScore W3035776964C11413529 @default.
- W3035776964 hasConceptScore W3035776964C121332964 @default.
- W3035776964 hasConceptScore W3035776964C121704057 @default.
- W3035776964 hasConceptScore W3035776964C144024400 @default.
- W3035776964 hasConceptScore W3035776964C153258448 @default.
- W3035776964 hasConceptScore W3035776964C153294291 @default.
- W3035776964 hasConceptScore W3035776964C154945302 @default.
- W3035776964 hasConceptScore W3035776964C159985019 @default.
- W3035776964 hasConceptScore W3035776964C162307627 @default.
- W3035776964 hasConceptScore W3035776964C17744445 @default.
- W3035776964 hasConceptScore W3035776964C192562407 @default.
- W3035776964 hasConceptScore W3035776964C199539241 @default.
- W3035776964 hasConceptScore W3035776964C204323151 @default.
- W3035776964 hasConceptScore W3035776964C2524010 @default.
- W3035776964 hasConceptScore W3035776964C2776359362 @default.
- W3035776964 hasConceptScore W3035776964C2776637919 @default.