Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035777330> ?p ?o ?g. }
- W3035777330 abstract "Abstract Larger training datasets have been shown to improve the accuracy of machine learning (ML)-based scoring functions (SFs) for structure-based virtual screening (SBVS). In addition, massive test sets for SBVS, known as ultra-large compound libraries, have been demonstrated to enable the fast discovery of selective drug leads with low-nanomolar potency. This proof-of-concept was carried out on two targets using a single docking tool along with its SF. It is thus unclear whether this high level of performance would generalise to other targets, docking tools and SFs. We found that screening a larger compound library results in more potent actives being identified in all six additional targets using a different docking tool along with its classical SF. Furthermore, we established that a way to improve the potency of the retrieved molecules further is to rank them with more accurate ML-based SFs (we found this to be true in four of the six targets; the difference was not significant in the remaining two targets). A 3-fold increase in average hit rate across targets was also achieved by the ML-based SFs. Lastly, we observed that classical and ML-based SFs often find different actives, which supports using both types of SFs on those targets." @default.
- W3035777330 created "2020-06-25" @default.
- W3035777330 creator A5005597587 @default.
- W3035777330 creator A5042374222 @default.
- W3035777330 date "2020-06-22" @default.
- W3035777330 modified "2023-10-14" @default.
- W3035777330 title "The impact of compound library size on the performance of scoring functions for structure-based virtual screening" @default.
- W3035777330 cites W1771129337 @default.
- W3035777330 cites W1950993160 @default.
- W3035777330 cites W1968319881 @default.
- W3035777330 cites W1972283506 @default.
- W3035777330 cites W1983497293 @default.
- W3035777330 cites W1988195734 @default.
- W3035777330 cites W1993403967 @default.
- W3035777330 cites W1998848097 @default.
- W3035777330 cites W2000350990 @default.
- W3035777330 cites W2022998385 @default.
- W3035777330 cites W2028629022 @default.
- W3035777330 cites W2031153203 @default.
- W3035777330 cites W2035608912 @default.
- W3035777330 cites W2046439009 @default.
- W3035777330 cites W2052666656 @default.
- W3035777330 cites W2053253524 @default.
- W3035777330 cites W2057260453 @default.
- W3035777330 cites W2059230675 @default.
- W3035777330 cites W2075020622 @default.
- W3035777330 cites W2079331631 @default.
- W3035777330 cites W2091359669 @default.
- W3035777330 cites W2108245251 @default.
- W3035777330 cites W2114212850 @default.
- W3035777330 cites W2132629607 @default.
- W3035777330 cites W2148512505 @default.
- W3035777330 cites W2164088236 @default.
- W3035777330 cites W2271352405 @default.
- W3035777330 cites W2336411773 @default.
- W3035777330 cites W2338548910 @default.
- W3035777330 cites W2345322579 @default.
- W3035777330 cites W2399340976 @default.
- W3035777330 cites W2509519298 @default.
- W3035777330 cites W2521525223 @default.
- W3035777330 cites W2536259549 @default.
- W3035777330 cites W2558999090 @default.
- W3035777330 cites W2608559058 @default.
- W3035777330 cites W2726704823 @default.
- W3035777330 cites W2774371249 @default.
- W3035777330 cites W2788287070 @default.
- W3035777330 cites W2792951589 @default.
- W3035777330 cites W2808035226 @default.
- W3035777330 cites W2887514299 @default.
- W3035777330 cites W2894566366 @default.
- W3035777330 cites W2912171584 @default.
- W3035777330 cites W2916487223 @default.
- W3035777330 cites W2920995682 @default.
- W3035777330 cites W2922063386 @default.
- W3035777330 cites W2951676304 @default.
- W3035777330 cites W2955986556 @default.
- W3035777330 cites W2959938226 @default.
- W3035777330 cites W2963883198 @default.
- W3035777330 cites W2964549872 @default.
- W3035777330 cites W2968615621 @default.
- W3035777330 cites W2970093742 @default.
- W3035777330 cites W2980234582 @default.
- W3035777330 cites W2982145277 @default.
- W3035777330 cites W2984249386 @default.
- W3035777330 cites W3005009369 @default.
- W3035777330 cites W3005417975 @default.
- W3035777330 cites W3007309629 @default.
- W3035777330 cites W3104705366 @default.
- W3035777330 doi "https://doi.org/10.1093/bib/bbaa095" @default.
- W3035777330 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32568385" @default.
- W3035777330 hasPublicationYear "2020" @default.
- W3035777330 type Work @default.
- W3035777330 sameAs 3035777330 @default.
- W3035777330 citedByCount "19" @default.
- W3035777330 countsByYear W30357773302019 @default.
- W3035777330 countsByYear W30357773302021 @default.
- W3035777330 countsByYear W30357773302022 @default.
- W3035777330 countsByYear W30357773302023 @default.
- W3035777330 crossrefType "journal-article" @default.
- W3035777330 hasAuthorship W3035777330A5005597587 @default.
- W3035777330 hasAuthorship W3035777330A5042374222 @default.
- W3035777330 hasBestOaLocation W30357773302 @default.
- W3035777330 hasConcept C103697762 @default.
- W3035777330 hasConcept C119857082 @default.
- W3035777330 hasConcept C124101348 @default.
- W3035777330 hasConcept C154945302 @default.
- W3035777330 hasConcept C159110408 @default.
- W3035777330 hasConcept C169903167 @default.
- W3035777330 hasConcept C185592680 @default.
- W3035777330 hasConcept C202751555 @default.
- W3035777330 hasConcept C41008148 @default.
- W3035777330 hasConcept C41685203 @default.
- W3035777330 hasConcept C51632099 @default.
- W3035777330 hasConcept C55493867 @default.
- W3035777330 hasConcept C57992300 @default.
- W3035777330 hasConcept C60644358 @default.
- W3035777330 hasConcept C70721500 @default.
- W3035777330 hasConcept C71924100 @default.
- W3035777330 hasConcept C74187038 @default.
- W3035777330 hasConcept C86803240 @default.