Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035803417> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3035803417 abstract "Bayesian optimization with Gaussian Process (GP) models has been proposed for analog synthesis since it is efficient for the optimizations of expensive black-box functions. However, the computational cost for training and prediction of Gaussian process models are O(N <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>3</sup> ) and O(N <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> ), respectively, where N is the number of data points. The overhead of the Gaussian process modeling would not be negligible as N is relatively large. Recently, a Bayesian optimization approach using neural network has been proposed to address this problem. It reduces the computational cost of training and prediction of Gaussian process models to O(N) and O(1), respectively. However, reducing the infinite-dimensional kernel to finite-dimensional kernel using neural network mapping would weaken the characterization ability of Gaussian process. In this paper, we propose a novel Bayesian optimization approach using Sparse Pseudo-input Gaussian Process (SPGP). The idea is to use M <; N so-called inducing points to build a sparse Gaussian process model to approximate the conventional exact Gaussian process model. Without the need to sacrifice the modeling ability of the surrogate model, it also reduces the computational cost of both training and prediction to O(N) and O(1), respectively. Several experiments were provided to demonstrate the efficiency of the proposed approach." @default.
- W3035803417 created "2020-06-25" @default.
- W3035803417 creator A5017568991 @default.
- W3035803417 creator A5037328458 @default.
- W3035803417 creator A5045464812 @default.
- W3035803417 creator A5054587707 @default.
- W3035803417 creator A5054960059 @default.
- W3035803417 creator A5064213921 @default.
- W3035803417 date "2020-03-01" @default.
- W3035803417 modified "2023-09-24" @default.
- W3035803417 title "An Efficient Bayesian Optimization Approach for Analog Circuit Synthesis via Sparse Gaussian Process Modeling" @default.
- W3035803417 cites W1964239621 @default.
- W3035803417 cites W2051434435 @default.
- W3035803417 cites W2065183815 @default.
- W3035803417 cites W2068923837 @default.
- W3035803417 cites W2074046446 @default.
- W3035803417 cites W2092297295 @default.
- W3035803417 cites W2144133630 @default.
- W3035803417 cites W2144873182 @default.
- W3035803417 cites W2154237706 @default.
- W3035803417 cites W2171048418 @default.
- W3035803417 cites W2192203593 @default.
- W3035803417 cites W2386578045 @default.
- W3035803417 cites W2769791151 @default.
- W3035803417 cites W3100083105 @default.
- W3035803417 doi "https://doi.org/10.23919/date48585.2020.9116366" @default.
- W3035803417 hasPublicationYear "2020" @default.
- W3035803417 type Work @default.
- W3035803417 sameAs 3035803417 @default.
- W3035803417 citedByCount "9" @default.
- W3035803417 countsByYear W30358034172021 @default.
- W3035803417 countsByYear W30358034172022 @default.
- W3035803417 countsByYear W30358034172023 @default.
- W3035803417 crossrefType "proceedings-article" @default.
- W3035803417 hasAuthorship W3035803417A5017568991 @default.
- W3035803417 hasAuthorship W3035803417A5037328458 @default.
- W3035803417 hasAuthorship W3035803417A5045464812 @default.
- W3035803417 hasAuthorship W3035803417A5054587707 @default.
- W3035803417 hasAuthorship W3035803417A5054960059 @default.
- W3035803417 hasAuthorship W3035803417A5064213921 @default.
- W3035803417 hasConcept C111919701 @default.
- W3035803417 hasConcept C11413529 @default.
- W3035803417 hasConcept C118615104 @default.
- W3035803417 hasConcept C119857082 @default.
- W3035803417 hasConcept C121332964 @default.
- W3035803417 hasConcept C154945302 @default.
- W3035803417 hasConcept C163716315 @default.
- W3035803417 hasConcept C22019652 @default.
- W3035803417 hasConcept C2778049539 @default.
- W3035803417 hasConcept C2779960059 @default.
- W3035803417 hasConcept C33923547 @default.
- W3035803417 hasConcept C41008148 @default.
- W3035803417 hasConcept C50644808 @default.
- W3035803417 hasConcept C61326573 @default.
- W3035803417 hasConcept C62520636 @default.
- W3035803417 hasConcept C74193536 @default.
- W3035803417 hasConcept C81692654 @default.
- W3035803417 hasConceptScore W3035803417C111919701 @default.
- W3035803417 hasConceptScore W3035803417C11413529 @default.
- W3035803417 hasConceptScore W3035803417C118615104 @default.
- W3035803417 hasConceptScore W3035803417C119857082 @default.
- W3035803417 hasConceptScore W3035803417C121332964 @default.
- W3035803417 hasConceptScore W3035803417C154945302 @default.
- W3035803417 hasConceptScore W3035803417C163716315 @default.
- W3035803417 hasConceptScore W3035803417C22019652 @default.
- W3035803417 hasConceptScore W3035803417C2778049539 @default.
- W3035803417 hasConceptScore W3035803417C2779960059 @default.
- W3035803417 hasConceptScore W3035803417C33923547 @default.
- W3035803417 hasConceptScore W3035803417C41008148 @default.
- W3035803417 hasConceptScore W3035803417C50644808 @default.
- W3035803417 hasConceptScore W3035803417C61326573 @default.
- W3035803417 hasConceptScore W3035803417C62520636 @default.
- W3035803417 hasConceptScore W3035803417C74193536 @default.
- W3035803417 hasConceptScore W3035803417C81692654 @default.
- W3035803417 hasLocation W30358034171 @default.
- W3035803417 hasOpenAccess W3035803417 @default.
- W3035803417 hasPrimaryLocation W30358034171 @default.
- W3035803417 hasRelatedWork W1996541855 @default.
- W3035803417 hasRelatedWork W2940336242 @default.
- W3035803417 hasRelatedWork W2989932438 @default.
- W3035803417 hasRelatedWork W3099765033 @default.
- W3035803417 hasRelatedWork W3104422856 @default.
- W3035803417 hasRelatedWork W3199608561 @default.
- W3035803417 hasRelatedWork W4210794429 @default.
- W3035803417 hasRelatedWork W4287323988 @default.
- W3035803417 hasRelatedWork W4321472482 @default.
- W3035803417 hasRelatedWork W4384067985 @default.
- W3035803417 isParatext "false" @default.
- W3035803417 isRetracted "false" @default.
- W3035803417 magId "3035803417" @default.
- W3035803417 workType "article" @default.