Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035880404> ?p ?o ?g. }
- W3035880404 endingPage "108117" @default.
- W3035880404 startingPage "108117" @default.
- W3035880404 abstract "Abstract The aim of this study was to compare the performance of FT-NIR spectroscopy and near-infrared hyperspectral imaging (NIR-HSI) in predicting the Corg and Nt contents in mine soils. The mine soil samples were measured for the Corg and Nt contents and their NIR spectra were recorded (1000–2500 nm). Predictive models were developed using 126 samples with partial least square regression (PLSR) or artificial neural networks (ANN) and validated with 58 independent samples. The NIR-HSI based models had distinctly higher accuracy of Corg content prediction than those based on FT-NIR data in both PLSR and ANN methods, as indicated by lower of standard errors of prediction. The prediction accuracy for the Nt content was similar for the two spectral methods and both chemometric approaches tested. The study showed that despite lower spectral resolution the NIR-HSI spectra retained all the information needed for accurate prediction of Corg and Nt contents." @default.
- W3035880404 created "2020-06-25" @default.
- W3035880404 creator A5033291999 @default.
- W3035880404 creator A5037865890 @default.
- W3035880404 creator A5044489662 @default.
- W3035880404 creator A5048097248 @default.
- W3035880404 date "2020-11-01" @default.
- W3035880404 modified "2023-10-03" @default.
- W3035880404 title "Application of FT-NIR spectroscopy and NIR hyperspectral imaging to predict nitrogen and organic carbon contents in mine soils" @default.
- W3035880404 cites W1964503221 @default.
- W3035880404 cites W1967384488 @default.
- W3035880404 cites W1967537850 @default.
- W3035880404 cites W1968403332 @default.
- W3035880404 cites W1973273412 @default.
- W3035880404 cites W1977941597 @default.
- W3035880404 cites W1979243527 @default.
- W3035880404 cites W1980266419 @default.
- W3035880404 cites W1981776028 @default.
- W3035880404 cites W1982099633 @default.
- W3035880404 cites W1984114559 @default.
- W3035880404 cites W1998053851 @default.
- W3035880404 cites W2003756234 @default.
- W3035880404 cites W2007365900 @default.
- W3035880404 cites W2008614261 @default.
- W3035880404 cites W2012358846 @default.
- W3035880404 cites W2025015460 @default.
- W3035880404 cites W2026982974 @default.
- W3035880404 cites W2030795735 @default.
- W3035880404 cites W2038550525 @default.
- W3035880404 cites W2041120207 @default.
- W3035880404 cites W2051574590 @default.
- W3035880404 cites W2054603652 @default.
- W3035880404 cites W2055592098 @default.
- W3035880404 cites W2056934349 @default.
- W3035880404 cites W2065746048 @default.
- W3035880404 cites W2072725874 @default.
- W3035880404 cites W2073503722 @default.
- W3035880404 cites W2073728969 @default.
- W3035880404 cites W2073858026 @default.
- W3035880404 cites W2073969730 @default.
- W3035880404 cites W2082231206 @default.
- W3035880404 cites W2084480346 @default.
- W3035880404 cites W2087361818 @default.
- W3035880404 cites W2090785325 @default.
- W3035880404 cites W2116146912 @default.
- W3035880404 cites W2128189087 @default.
- W3035880404 cites W2138050922 @default.
- W3035880404 cites W2149789682 @default.
- W3035880404 cites W2157129839 @default.
- W3035880404 cites W2158585626 @default.
- W3035880404 cites W2551518784 @default.
- W3035880404 cites W2754473040 @default.
- W3035880404 cites W2783542130 @default.
- W3035880404 cites W2799365888 @default.
- W3035880404 cites W2886091318 @default.
- W3035880404 cites W2964397179 @default.
- W3035880404 doi "https://doi.org/10.1016/j.measurement.2020.108117" @default.
- W3035880404 hasPublicationYear "2020" @default.
- W3035880404 type Work @default.
- W3035880404 sameAs 3035880404 @default.
- W3035880404 citedByCount "21" @default.
- W3035880404 countsByYear W30358804042021 @default.
- W3035880404 countsByYear W30358804042022 @default.
- W3035880404 countsByYear W30358804042023 @default.
- W3035880404 crossrefType "journal-article" @default.
- W3035880404 hasAuthorship W3035880404A5033291999 @default.
- W3035880404 hasAuthorship W3035880404A5037865890 @default.
- W3035880404 hasAuthorship W3035880404A5044489662 @default.
- W3035880404 hasAuthorship W3035880404A5048097248 @default.
- W3035880404 hasConcept C104779481 @default.
- W3035880404 hasConcept C107872376 @default.
- W3035880404 hasConcept C120665830 @default.
- W3035880404 hasConcept C121332964 @default.
- W3035880404 hasConcept C127313418 @default.
- W3035880404 hasConcept C140205800 @default.
- W3035880404 hasConcept C158479148 @default.
- W3035880404 hasConcept C158787203 @default.
- W3035880404 hasConcept C159078339 @default.
- W3035880404 hasConcept C159390177 @default.
- W3035880404 hasConcept C159750122 @default.
- W3035880404 hasConcept C159985019 @default.
- W3035880404 hasConcept C178790620 @default.
- W3035880404 hasConcept C185592680 @default.
- W3035880404 hasConcept C192562407 @default.
- W3035880404 hasConcept C32891209 @default.
- W3035880404 hasConcept C39432304 @default.
- W3035880404 hasConcept C39464130 @default.
- W3035880404 hasConcept C43571822 @default.
- W3035880404 hasConcept C537208039 @default.
- W3035880404 hasConcept C62520636 @default.
- W3035880404 hasConcept C62649853 @default.
- W3035880404 hasConceptScore W3035880404C104779481 @default.
- W3035880404 hasConceptScore W3035880404C107872376 @default.
- W3035880404 hasConceptScore W3035880404C120665830 @default.
- W3035880404 hasConceptScore W3035880404C121332964 @default.
- W3035880404 hasConceptScore W3035880404C127313418 @default.
- W3035880404 hasConceptScore W3035880404C140205800 @default.
- W3035880404 hasConceptScore W3035880404C158479148 @default.