Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035901522> ?p ?o ?g. }
- W3035901522 endingPage "3242" @default.
- W3035901522 startingPage "3242" @default.
- W3035901522 abstract "Electricity fraud in billing are the primary concerns for Distribution System Operators (DSO). It is estimated that billions of dollars are wasted annually due to these illegal activities. DSOs around the world, especially in underdeveloped countries, still utilize conventional time consuming and inefficient methods for Non-Technical Loss (NTL) detection. This research work attempts to solve the mentioned problem by developing an efficient energy theft detection model in order to identify the fraudster customers in a power distribution system. The key motivation for the present study is to assist the DSOs in their fight against energy theft. The proposed computational model initially utilizes a set of distinct features extracted from the monthly consumers’ consumption data, obtained from Multan Electric Power Company (MEPCO) Pakistan, to segregate the honest and the fraudulent customers. The Pearson’s chi-square feature selection algorithm is adopted to select the most relevant features among the extracted ones. Finally, the Boosted C5.0 Decision Tree (DT) algorithm is used to classify the honest and the fraudster consumers based on the outcomes of the selected features. To validate the superiority of the proposed NTL detection approach, its performance is matched with that of few state-of-the-art machine learning algorithms (one of most exciting recent technologies in Artificial Intelligence), like Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN) and Extreme Gradient Bossting (XGBoost). The proposed NTL detection method provides an accuracy of 94.6%, Sensitivity of 78.1%, Specificity of 98.2%, F1 score 84.9% and Precision of 93.2% which are significantly higher than that of the same for the above-mentioned algorithms." @default.
- W3035901522 created "2020-06-25" @default.
- W3035901522 creator A5009363146 @default.
- W3035901522 creator A5037602856 @default.
- W3035901522 creator A5049783017 @default.
- W3035901522 creator A5075184201 @default.
- W3035901522 creator A5076452112 @default.
- W3035901522 creator A5079082292 @default.
- W3035901522 creator A5091222441 @default.
- W3035901522 date "2020-06-23" @default.
- W3035901522 modified "2023-10-03" @default.
- W3035901522 title "An Efficient Boosted C5.0 Decision-Tree-Based Classification Approach for Detecting Non-Technical Losses in Power Utilities" @default.
- W3035901522 cites W2022022719 @default.
- W3035901522 cites W2098750759 @default.
- W3035901522 cites W2117571858 @default.
- W3035901522 cites W2121352581 @default.
- W3035901522 cites W2127320665 @default.
- W3035901522 cites W2143845394 @default.
- W3035901522 cites W2162112159 @default.
- W3035901522 cites W2188715005 @default.
- W3035901522 cites W2212529815 @default.
- W3035901522 cites W2312446965 @default.
- W3035901522 cites W2320464932 @default.
- W3035901522 cites W2411244218 @default.
- W3035901522 cites W2517525317 @default.
- W3035901522 cites W2529785782 @default.
- W3035901522 cites W2551921903 @default.
- W3035901522 cites W2609141739 @default.
- W3035901522 cites W2725329029 @default.
- W3035901522 cites W2776990447 @default.
- W3035901522 cites W2788544268 @default.
- W3035901522 cites W2793717822 @default.
- W3035901522 cites W2800562601 @default.
- W3035901522 cites W2806854509 @default.
- W3035901522 cites W2893939336 @default.
- W3035901522 cites W2904079136 @default.
- W3035901522 cites W2910992412 @default.
- W3035901522 cites W2912843585 @default.
- W3035901522 cites W2914738292 @default.
- W3035901522 cites W2915658581 @default.
- W3035901522 cites W2916383701 @default.
- W3035901522 cites W2946887237 @default.
- W3035901522 cites W2948546254 @default.
- W3035901522 cites W2953404784 @default.
- W3035901522 cites W2958114818 @default.
- W3035901522 cites W2964192219 @default.
- W3035901522 cites W2965226712 @default.
- W3035901522 cites W2972793138 @default.
- W3035901522 cites W2975154836 @default.
- W3035901522 cites W2979727854 @default.
- W3035901522 cites W2981055144 @default.
- W3035901522 cites W2998382059 @default.
- W3035901522 cites W3019498055 @default.
- W3035901522 doi "https://doi.org/10.3390/en13123242" @default.
- W3035901522 hasPublicationYear "2020" @default.
- W3035901522 type Work @default.
- W3035901522 sameAs 3035901522 @default.
- W3035901522 citedByCount "19" @default.
- W3035901522 countsByYear W30359015222020 @default.
- W3035901522 countsByYear W30359015222021 @default.
- W3035901522 countsByYear W30359015222022 @default.
- W3035901522 countsByYear W30359015222023 @default.
- W3035901522 crossrefType "journal-article" @default.
- W3035901522 hasAuthorship W3035901522A5009363146 @default.
- W3035901522 hasAuthorship W3035901522A5037602856 @default.
- W3035901522 hasAuthorship W3035901522A5049783017 @default.
- W3035901522 hasAuthorship W3035901522A5075184201 @default.
- W3035901522 hasAuthorship W3035901522A5076452112 @default.
- W3035901522 hasAuthorship W3035901522A5079082292 @default.
- W3035901522 hasAuthorship W3035901522A5091222441 @default.
- W3035901522 hasBestOaLocation W30359015221 @default.
- W3035901522 hasConcept C113174947 @default.
- W3035901522 hasConcept C119857082 @default.
- W3035901522 hasConcept C12267149 @default.
- W3035901522 hasConcept C124101348 @default.
- W3035901522 hasConcept C134306372 @default.
- W3035901522 hasConcept C148483581 @default.
- W3035901522 hasConcept C154945302 @default.
- W3035901522 hasConcept C169258074 @default.
- W3035901522 hasConcept C26517878 @default.
- W3035901522 hasConcept C33923547 @default.
- W3035901522 hasConcept C38652104 @default.
- W3035901522 hasConcept C41008148 @default.
- W3035901522 hasConcept C50644808 @default.
- W3035901522 hasConcept C84525736 @default.
- W3035901522 hasConceptScore W3035901522C113174947 @default.
- W3035901522 hasConceptScore W3035901522C119857082 @default.
- W3035901522 hasConceptScore W3035901522C12267149 @default.
- W3035901522 hasConceptScore W3035901522C124101348 @default.
- W3035901522 hasConceptScore W3035901522C134306372 @default.
- W3035901522 hasConceptScore W3035901522C148483581 @default.
- W3035901522 hasConceptScore W3035901522C154945302 @default.
- W3035901522 hasConceptScore W3035901522C169258074 @default.
- W3035901522 hasConceptScore W3035901522C26517878 @default.
- W3035901522 hasConceptScore W3035901522C33923547 @default.
- W3035901522 hasConceptScore W3035901522C38652104 @default.
- W3035901522 hasConceptScore W3035901522C41008148 @default.
- W3035901522 hasConceptScore W3035901522C50644808 @default.