Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035923887> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3035923887 endingPage "108804" @default.
- W3035923887 startingPage "108804" @default.
- W3035923887 abstract "Deep learning models are turning out to be increasingly popular in biomedical image processing. The fruitful utilization of these models, in most cases, is substantially restricted by the complicated configuration of computational environments, resulting in the noteworthy increment of the time and endeavors to reproduce the outcomes of the models. We thus present a Docker-based method for better use of deep learning models and quicker reproduction of model performance for multiple data sources, permitting progressively more biomedical scientists to attempt the new technology conveniently in their domain. Here, we introduce a Docker-powered deep learning model, named as DDeep3M and validated it with the electron microscopy data volumes (microscale). DDeep3M is utilized to the 3D optical microscopy image stack in mouse brain for the image segmentation (mesoscale). It achieves high accuracy on both vessels and somata structures with all the recall/precision scores and Dice indexes over 0.96. DDeep3M also reports the state-of-the-art performance in the MRI data (macroscale) for brain tumor segmentation. We compare the performance and efficiency of DDeep3M with three existing models on image datasets varying from micro- to macro-scales. DDeep3M is a friendly, convenient and efficient tool for image segmentations in biomedical research. DDeep3M is open sourced with the codes and pretrained model weights available at https://github.com/cakuba/DDeep3m." @default.
- W3035923887 created "2020-06-25" @default.
- W3035923887 creator A5017229676 @default.
- W3035923887 creator A5020460631 @default.
- W3035923887 creator A5069432086 @default.
- W3035923887 creator A5069858475 @default.
- W3035923887 creator A5075868040 @default.
- W3035923887 creator A5087192369 @default.
- W3035923887 date "2020-08-01" @default.
- W3035923887 modified "2023-10-11" @default.
- W3035923887 title "DDeep3M: Docker-powered deep learning for biomedical image segmentation" @default.
- W3035923887 cites W1641498739 @default.
- W3035923887 cites W2011650974 @default.
- W3035923887 cites W2559756885 @default.
- W3035923887 cites W2604468722 @default.
- W3035923887 cites W2751069891 @default.
- W3035923887 cites W2780318688 @default.
- W3035923887 cites W2888612993 @default.
- W3035923887 cites W2900936384 @default.
- W3035923887 cites W2919115771 @default.
- W3035923887 cites W2962806565 @default.
- W3035923887 cites W2962867356 @default.
- W3035923887 cites W3012387312 @default.
- W3035923887 cites W3101507774 @default.
- W3035923887 doi "https://doi.org/10.1016/j.jneumeth.2020.108804" @default.
- W3035923887 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32565223" @default.
- W3035923887 hasPublicationYear "2020" @default.
- W3035923887 type Work @default.
- W3035923887 sameAs 3035923887 @default.
- W3035923887 citedByCount "10" @default.
- W3035923887 countsByYear W30359238872020 @default.
- W3035923887 countsByYear W30359238872021 @default.
- W3035923887 countsByYear W30359238872022 @default.
- W3035923887 countsByYear W30359238872023 @default.
- W3035923887 crossrefType "journal-article" @default.
- W3035923887 hasAuthorship W3035923887A5017229676 @default.
- W3035923887 hasAuthorship W3035923887A5020460631 @default.
- W3035923887 hasAuthorship W3035923887A5069432086 @default.
- W3035923887 hasAuthorship W3035923887A5069858475 @default.
- W3035923887 hasAuthorship W3035923887A5075868040 @default.
- W3035923887 hasAuthorship W3035923887A5087192369 @default.
- W3035923887 hasConcept C108583219 @default.
- W3035923887 hasConcept C115961682 @default.
- W3035923887 hasConcept C119857082 @default.
- W3035923887 hasConcept C124504099 @default.
- W3035923887 hasConcept C145420912 @default.
- W3035923887 hasConcept C153180895 @default.
- W3035923887 hasConcept C154945302 @default.
- W3035923887 hasConcept C179428855 @default.
- W3035923887 hasConcept C31972630 @default.
- W3035923887 hasConcept C33923547 @default.
- W3035923887 hasConcept C41008148 @default.
- W3035923887 hasConcept C89600930 @default.
- W3035923887 hasConcept C9417928 @default.
- W3035923887 hasConceptScore W3035923887C108583219 @default.
- W3035923887 hasConceptScore W3035923887C115961682 @default.
- W3035923887 hasConceptScore W3035923887C119857082 @default.
- W3035923887 hasConceptScore W3035923887C124504099 @default.
- W3035923887 hasConceptScore W3035923887C145420912 @default.
- W3035923887 hasConceptScore W3035923887C153180895 @default.
- W3035923887 hasConceptScore W3035923887C154945302 @default.
- W3035923887 hasConceptScore W3035923887C179428855 @default.
- W3035923887 hasConceptScore W3035923887C31972630 @default.
- W3035923887 hasConceptScore W3035923887C33923547 @default.
- W3035923887 hasConceptScore W3035923887C41008148 @default.
- W3035923887 hasConceptScore W3035923887C89600930 @default.
- W3035923887 hasConceptScore W3035923887C9417928 @default.
- W3035923887 hasFunder F4320321001 @default.
- W3035923887 hasFunder F4320322271 @default.
- W3035923887 hasLocation W30359238871 @default.
- W3035923887 hasOpenAccess W3035923887 @default.
- W3035923887 hasPrimaryLocation W30359238871 @default.
- W3035923887 hasRelatedWork W1631910785 @default.
- W3035923887 hasRelatedWork W1669643531 @default.
- W3035923887 hasRelatedWork W2110230079 @default.
- W3035923887 hasRelatedWork W2117664411 @default.
- W3035923887 hasRelatedWork W2117933325 @default.
- W3035923887 hasRelatedWork W2122581818 @default.
- W3035923887 hasRelatedWork W2159066190 @default.
- W3035923887 hasRelatedWork W2739874619 @default.
- W3035923887 hasRelatedWork W2790662084 @default.
- W3035923887 hasRelatedWork W2948658236 @default.
- W3035923887 hasVolume "342" @default.
- W3035923887 isParatext "false" @default.
- W3035923887 isRetracted "false" @default.
- W3035923887 magId "3035923887" @default.
- W3035923887 workType "article" @default.