Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035939100> ?p ?o ?g. }
- W3035939100 endingPage "105466" @default.
- W3035939100 startingPage "105466" @default.
- W3035939100 abstract "Minirhizotron technology is widely used for studying the development of roots. Such systems collect visible-wavelength color imagery of plant roots in-situ by scanning an imaging system within a clear tube driven into the soil. Automated analysis of root systems could facilitate new scientific discoveries that would be critical to address the world's pressing food, resource, and climate issues. A key component of automated analysis of plant roots from imagery is the automated pixel-level segmentation of roots from their surrounding soil. Supervised learning techniques appear to be an appropriate tool for the challenge due to varying local soil and root conditions, however, lack of enough annotated training data is a major limitation due to the error-prone and time-consuming manually labeling process. In this paper, we investigate the use of deep neural networks based on the U-net architecture for automated, precise pixel-wise root segmentation in minirhizotron imagery. We compiled two minirhizotron image datasets to accomplish this study: one with 17,550 peanut root images and another with 28 switchgrass root images. Both datasets were paired with manually labeled ground truth masks. We trained three neural networks with different architectures on the larger peanut root dataset to explore the effect of the neural network depth on segmentation performance. To tackle the more limited switchgrass root dataset, we showed that models initialized with features pre-trained on the peanut dataset and then fine-tuned on the switchgrass dataset can improve segmentation performance significantly. We obtained 99% segmentation accuracy in switchgrass imagery using only 21 training images. We also observed that features pre-trained on a closely related but relatively moderate size dataset like our peanut dataset are more effective than features pre-trained on the large but unrelated ImageNet dataset." @default.
- W3035939100 created "2020-06-25" @default.
- W3035939100 creator A5006097269 @default.
- W3035939100 creator A5016009268 @default.
- W3035939100 creator A5026883067 @default.
- W3035939100 creator A5048651485 @default.
- W3035939100 creator A5052553589 @default.
- W3035939100 creator A5052692733 @default.
- W3035939100 creator A5079676776 @default.
- W3035939100 creator A5085331414 @default.
- W3035939100 creator A5091572424 @default.
- W3035939100 date "2020-08-01" @default.
- W3035939100 modified "2023-10-16" @default.
- W3035939100 title "Overcoming small minirhizotron datasets using transfer learning" @default.
- W3035939100 cites W1901129140 @default.
- W3035939100 cites W1970480085 @default.
- W3035939100 cites W2057860937 @default.
- W3035939100 cites W2078103403 @default.
- W3035939100 cites W2412782625 @default.
- W3035939100 cites W2550409828 @default.
- W3035939100 cites W2884295988 @default.
- W3035939100 cites W2897992168 @default.
- W3035939100 cites W2911205309 @default.
- W3035939100 cites W2946232239 @default.
- W3035939100 cites W2956326158 @default.
- W3035939100 cites W2963330984 @default.
- W3035939100 cites W2972577936 @default.
- W3035939100 cites W3099295554 @default.
- W3035939100 doi "https://doi.org/10.1016/j.compag.2020.105466" @default.
- W3035939100 hasPublicationYear "2020" @default.
- W3035939100 type Work @default.
- W3035939100 sameAs 3035939100 @default.
- W3035939100 citedByCount "31" @default.
- W3035939100 countsByYear W30359391002020 @default.
- W3035939100 countsByYear W30359391002021 @default.
- W3035939100 countsByYear W30359391002022 @default.
- W3035939100 countsByYear W30359391002023 @default.
- W3035939100 crossrefType "journal-article" @default.
- W3035939100 hasAuthorship W3035939100A5006097269 @default.
- W3035939100 hasAuthorship W3035939100A5016009268 @default.
- W3035939100 hasAuthorship W3035939100A5026883067 @default.
- W3035939100 hasAuthorship W3035939100A5048651485 @default.
- W3035939100 hasAuthorship W3035939100A5052553589 @default.
- W3035939100 hasAuthorship W3035939100A5052692733 @default.
- W3035939100 hasAuthorship W3035939100A5079676776 @default.
- W3035939100 hasAuthorship W3035939100A5085331414 @default.
- W3035939100 hasAuthorship W3035939100A5091572424 @default.
- W3035939100 hasBestOaLocation W30359391001 @default.
- W3035939100 hasConcept C111919701 @default.
- W3035939100 hasConcept C118518473 @default.
- W3035939100 hasConcept C119857082 @default.
- W3035939100 hasConcept C138885662 @default.
- W3035939100 hasConcept C146849305 @default.
- W3035939100 hasConcept C150899416 @default.
- W3035939100 hasConcept C153180895 @default.
- W3035939100 hasConcept C154945302 @default.
- W3035939100 hasConcept C160633673 @default.
- W3035939100 hasConcept C166957645 @default.
- W3035939100 hasConcept C171078966 @default.
- W3035939100 hasConcept C205649164 @default.
- W3035939100 hasConcept C2776709785 @default.
- W3035939100 hasConcept C41008148 @default.
- W3035939100 hasConcept C41895202 @default.
- W3035939100 hasConcept C50644808 @default.
- W3035939100 hasConcept C62649853 @default.
- W3035939100 hasConcept C89600930 @default.
- W3035939100 hasConcept C98045186 @default.
- W3035939100 hasConceptScore W3035939100C111919701 @default.
- W3035939100 hasConceptScore W3035939100C118518473 @default.
- W3035939100 hasConceptScore W3035939100C119857082 @default.
- W3035939100 hasConceptScore W3035939100C138885662 @default.
- W3035939100 hasConceptScore W3035939100C146849305 @default.
- W3035939100 hasConceptScore W3035939100C150899416 @default.
- W3035939100 hasConceptScore W3035939100C153180895 @default.
- W3035939100 hasConceptScore W3035939100C154945302 @default.
- W3035939100 hasConceptScore W3035939100C160633673 @default.
- W3035939100 hasConceptScore W3035939100C166957645 @default.
- W3035939100 hasConceptScore W3035939100C171078966 @default.
- W3035939100 hasConceptScore W3035939100C205649164 @default.
- W3035939100 hasConceptScore W3035939100C2776709785 @default.
- W3035939100 hasConceptScore W3035939100C41008148 @default.
- W3035939100 hasConceptScore W3035939100C41895202 @default.
- W3035939100 hasConceptScore W3035939100C50644808 @default.
- W3035939100 hasConceptScore W3035939100C62649853 @default.
- W3035939100 hasConceptScore W3035939100C89600930 @default.
- W3035939100 hasConceptScore W3035939100C98045186 @default.
- W3035939100 hasFunder F4320306084 @default.
- W3035939100 hasFunder F4320332276 @default.
- W3035939100 hasLocation W30359391001 @default.
- W3035939100 hasLocation W30359391002 @default.
- W3035939100 hasLocation W30359391003 @default.
- W3035939100 hasLocation W30359391004 @default.
- W3035939100 hasLocation W30359391005 @default.
- W3035939100 hasOpenAccess W3035939100 @default.
- W3035939100 hasPrimaryLocation W30359391001 @default.
- W3035939100 hasRelatedWork W2136485282 @default.
- W3035939100 hasRelatedWork W2546871836 @default.
- W3035939100 hasRelatedWork W2795029307 @default.