Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035947003> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3035947003 abstract "In this paper, we have demonstrated how to apply CNN (Convolutional Neural Network) structured model and transfer learning to identify the ethnicity of Bengali people and it's a systematic process of gender classification too. We also applied several models of transfer learning like VGG16, Mobilenet, Resnet50, etc. to find out which model is more convenient to get our desired accuracy. But problems arise because there are many Indian people who look like and get dressed up like Bengali since in India many Bengali dwell in when many of them speak Bangla as well! (people of Kolkata along with some other provinces). So, the Bengali people are not only found in Bangladesh but also elsewhere in the world. That's why our model is based on facial images along with the tradition of their costumes. We tried to build a sophisticated model using CNN and transfer learning for this purpose and we got some tremendous performances applying transfer learning." @default.
- W3035947003 created "2020-06-25" @default.
- W3035947003 creator A5013226426 @default.
- W3035947003 creator A5018484407 @default.
- W3035947003 creator A5073644381 @default.
- W3035947003 date "2019-11-01" @default.
- W3035947003 modified "2023-10-05" @default.
- W3035947003 title "Bengali Ethnicity Recognition and Gender Classification using CNN & Transfer Learning" @default.
- W3035947003 cites W1897539390 @default.
- W3035947003 cites W1905153633 @default.
- W3035947003 cites W1972960842 @default.
- W3035947003 cites W1983364832 @default.
- W3035947003 cites W2020676607 @default.
- W3035947003 cites W2020944503 @default.
- W3035947003 cites W2101392314 @default.
- W3035947003 cites W2112796928 @default.
- W3035947003 cites W2168117308 @default.
- W3035947003 cites W2170414574 @default.
- W3035947003 cites W2233737587 @default.
- W3035947003 cites W2249960609 @default.
- W3035947003 cites W2724584750 @default.
- W3035947003 cites W2770456481 @default.
- W3035947003 cites W35361072 @default.
- W3035947003 doi "https://doi.org/10.1109/smart46866.2019.9117549" @default.
- W3035947003 hasPublicationYear "2019" @default.
- W3035947003 type Work @default.
- W3035947003 sameAs 3035947003 @default.
- W3035947003 citedByCount "4" @default.
- W3035947003 countsByYear W30359470032020 @default.
- W3035947003 countsByYear W30359470032022 @default.
- W3035947003 countsByYear W30359470032023 @default.
- W3035947003 crossrefType "proceedings-article" @default.
- W3035947003 hasAuthorship W3035947003A5013226426 @default.
- W3035947003 hasAuthorship W3035947003A5018484407 @default.
- W3035947003 hasAuthorship W3035947003A5073644381 @default.
- W3035947003 hasConcept C108583219 @default.
- W3035947003 hasConcept C111919701 @default.
- W3035947003 hasConcept C119857082 @default.
- W3035947003 hasConcept C150899416 @default.
- W3035947003 hasConcept C153180895 @default.
- W3035947003 hasConcept C154945302 @default.
- W3035947003 hasConcept C19235068 @default.
- W3035947003 hasConcept C204321447 @default.
- W3035947003 hasConcept C41008148 @default.
- W3035947003 hasConcept C81363708 @default.
- W3035947003 hasConcept C98045186 @default.
- W3035947003 hasConceptScore W3035947003C108583219 @default.
- W3035947003 hasConceptScore W3035947003C111919701 @default.
- W3035947003 hasConceptScore W3035947003C119857082 @default.
- W3035947003 hasConceptScore W3035947003C150899416 @default.
- W3035947003 hasConceptScore W3035947003C153180895 @default.
- W3035947003 hasConceptScore W3035947003C154945302 @default.
- W3035947003 hasConceptScore W3035947003C19235068 @default.
- W3035947003 hasConceptScore W3035947003C204321447 @default.
- W3035947003 hasConceptScore W3035947003C41008148 @default.
- W3035947003 hasConceptScore W3035947003C81363708 @default.
- W3035947003 hasConceptScore W3035947003C98045186 @default.
- W3035947003 hasLocation W30359470031 @default.
- W3035947003 hasOpenAccess W3035947003 @default.
- W3035947003 hasPrimaryLocation W30359470031 @default.
- W3035947003 hasRelatedWork W2996856019 @default.
- W3035947003 hasRelatedWork W3018421652 @default.
- W3035947003 hasRelatedWork W3021430260 @default.
- W3035947003 hasRelatedWork W3091976719 @default.
- W3035947003 hasRelatedWork W3192840557 @default.
- W3035947003 hasRelatedWork W4220996320 @default.
- W3035947003 hasRelatedWork W4285149559 @default.
- W3035947003 hasRelatedWork W4312200629 @default.
- W3035947003 hasRelatedWork W4382286161 @default.
- W3035947003 hasRelatedWork W4386213806 @default.
- W3035947003 isParatext "false" @default.
- W3035947003 isRetracted "false" @default.
- W3035947003 magId "3035947003" @default.
- W3035947003 workType "article" @default.