Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035960414> ?p ?o ?g. }
- W3035960414 endingPage "561" @default.
- W3035960414 startingPage "561" @default.
- W3035960414 abstract "Over the past decade, gene therapies have attracted much attention for the development of treatments for various conditions, including cancer, neurodegenerative diseases, protein deficiencies, and autoimmune disorders. Despite the benefits of this approach, several challenges are yet to be solved to reach clinical implementation. Some of these challenges include low transfection rates, limited stability under physiological conditions, and low specificity towards the target cells. An avenue to overcome such issues is to deliver the therapies with the aid of potent cell-penetrating vectors. Non-viral vectors, such as nanostructured materials, have been successfully tested in drug and gene delivery. Here, we propose the development and in vitro evaluation of a nanostructured cell-penetrating vehicle based on core/shell, magnetite/silver nanoparticles. A subsequent conjugation of a pH-responsive polymer was used to assure that the vehicle can carry and release circular DNA. Additionally, the translocating peptide Buforin II was conjugated with the aid of a polyether amine polymer to facilitate translocation and endosome escape. The obtained nanobioconjugates (magnetite/silver-pDMAEMA-PEA-BUFII) were characterized by UV-Vis spectrophotometry, dynamic light scattering (DLS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope equipped with energy dispersive spectroscopy (SEM+EDS), and transmission electron microscopy (TEM). They were also encapsulated in lecithin liposomes to form magnetoliposomes. The cell viability of Vero cells in the presence of the nanobioconjugates was above 95% and declined to 80% for the magnetoliposomes. The hemolytic tendency of nanobioconjugates and magnetoliposomes was below 10%, while the platelet aggregation approached that of the negative control (i.e., 35%). Cytoplasm coverage values of about 50% for both Vero and neuroblastoma cells confirmed significant cell penetration. Pearson’s correlation coefficients for both cell lines allowed us to estimate 20–40% colocalization of the nanobioconjugates with lysotracker green, which implied high levels of endosomal escape. The developed vehicles were also capable of loading around 16% of the added DNA and releasing such cargo with 8% efficiency. The developed nanoplatform holds a significant promise to enable highly efficient gene therapies as it overcomes some of the major issues associated with their eventual translation to the pre-clinical and clinical scale." @default.
- W3035960414 created "2020-06-25" @default.
- W3035960414 creator A5005252603 @default.
- W3035960414 creator A5032483962 @default.
- W3035960414 creator A5035572458 @default.
- W3035960414 creator A5036462268 @default.
- W3035960414 creator A5039861097 @default.
- W3035960414 creator A5070706252 @default.
- W3035960414 creator A5080732904 @default.
- W3035960414 date "2020-06-17" @default.
- W3035960414 modified "2023-10-05" @default.
- W3035960414 title "PH-Responsive, Cell-Penetrating, Core/Shell Magnetite/Silver Nanoparticles for the Delivery of Plasmids: Preparation, Characterization, and Preliminary In Vitro Evaluation" @default.
- W3035960414 cites W1128029328 @default.
- W3035960414 cites W1481565655 @default.
- W3035960414 cites W1960475700 @default.
- W3035960414 cites W1972336574 @default.
- W3035960414 cites W1974314236 @default.
- W3035960414 cites W1974318354 @default.
- W3035960414 cites W1976556354 @default.
- W3035960414 cites W1977987788 @default.
- W3035960414 cites W1980963876 @default.
- W3035960414 cites W1982972149 @default.
- W3035960414 cites W1986269836 @default.
- W3035960414 cites W1990837995 @default.
- W3035960414 cites W1991720510 @default.
- W3035960414 cites W1996242594 @default.
- W3035960414 cites W1996390251 @default.
- W3035960414 cites W1997237663 @default.
- W3035960414 cites W1998027562 @default.
- W3035960414 cites W2000485203 @default.
- W3035960414 cites W2002969911 @default.
- W3035960414 cites W2006323020 @default.
- W3035960414 cites W2010144147 @default.
- W3035960414 cites W2015178996 @default.
- W3035960414 cites W2016438823 @default.
- W3035960414 cites W2020027505 @default.
- W3035960414 cites W2027283694 @default.
- W3035960414 cites W2029207036 @default.
- W3035960414 cites W2030536167 @default.
- W3035960414 cites W2034493247 @default.
- W3035960414 cites W2037536507 @default.
- W3035960414 cites W2041780927 @default.
- W3035960414 cites W2053283326 @default.
- W3035960414 cites W2053608702 @default.
- W3035960414 cites W2054745605 @default.
- W3035960414 cites W2067923079 @default.
- W3035960414 cites W2068303118 @default.
- W3035960414 cites W2094262202 @default.
- W3035960414 cites W2118366787 @default.
- W3035960414 cites W2125737305 @default.
- W3035960414 cites W2126184258 @default.
- W3035960414 cites W2134660394 @default.
- W3035960414 cites W2135782311 @default.
- W3035960414 cites W2161542492 @default.
- W3035960414 cites W2165243439 @default.
- W3035960414 cites W2167279371 @default.
- W3035960414 cites W2170843651 @default.
- W3035960414 cites W2174451087 @default.
- W3035960414 cites W2282883256 @default.
- W3035960414 cites W2315737460 @default.
- W3035960414 cites W2321682041 @default.
- W3035960414 cites W2330477746 @default.
- W3035960414 cites W2336822846 @default.
- W3035960414 cites W2344816093 @default.
- W3035960414 cites W2411722430 @default.
- W3035960414 cites W2412789003 @default.
- W3035960414 cites W2473467726 @default.
- W3035960414 cites W2524309844 @default.
- W3035960414 cites W2551672460 @default.
- W3035960414 cites W2553124385 @default.
- W3035960414 cites W2609892001 @default.
- W3035960414 cites W2612944282 @default.
- W3035960414 cites W2759402071 @default.
- W3035960414 cites W2803885977 @default.
- W3035960414 cites W2810896730 @default.
- W3035960414 cites W2886368150 @default.
- W3035960414 cites W2890167612 @default.
- W3035960414 cites W2890784575 @default.
- W3035960414 cites W2897878646 @default.
- W3035960414 cites W2902495826 @default.
- W3035960414 cites W2908282584 @default.
- W3035960414 cites W2908771924 @default.
- W3035960414 cites W2912169832 @default.
- W3035960414 cites W2912886292 @default.
- W3035960414 cites W2913285001 @default.
- W3035960414 cites W2918335702 @default.
- W3035960414 cites W2918612696 @default.
- W3035960414 cites W2955024369 @default.
- W3035960414 cites W2982128103 @default.
- W3035960414 cites W3034349905 @default.
- W3035960414 cites W304669699 @default.
- W3035960414 doi "https://doi.org/10.3390/pharmaceutics12060561" @default.
- W3035960414 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7356180" @default.
- W3035960414 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32560390" @default.
- W3035960414 hasPublicationYear "2020" @default.
- W3035960414 type Work @default.
- W3035960414 sameAs 3035960414 @default.
- W3035960414 citedByCount "25" @default.