Matches in SemOpenAlex for { <https://semopenalex.org/work/W3035963570> ?p ?o ?g. }
- W3035963570 endingPage "052058" @default.
- W3035963570 startingPage "052058" @default.
- W3035963570 abstract "Abstract The processing of crude oil in the onshore platform often results in the generation of produce water containing harmful organic pollutants such as phenol. If the produce water is not properly treated to get rid of the organic pollutants, human exposure when discharged could be detrimental to health. Photocatalytic degradation of the organic pollutant has been a proven, non-expensive techniques of removing these harmful organic compounds from the produce water. However, the detail experimentation is often tedious and costly. One way to investigate the non-linear relationship between the parameters for effective performance of the photodegradation is by artificial neural network modelling. This study investigates the predictive modelling of photocatalytic phenol degradation from crude oil wastewater using Bayesian regularization-trained multilayer perceptron neural network (MLPNN). The ZnO/Fe 2 O 3 photocatalyst used for the photodegradation was prepared using sol-gel method and employed for the phenol degradation study in a batch reactor under solar irradiation. Twenty-six datasets generated by Box-Behken experimental design was used for the training of the MLPNN with input variables as irradiation time, initial phenol concentration, photocatalyst dosage and the pH of the solution while the output layer consist of phenol degradation. Several MLPNN architecture was tested to obtain an optimized 4 5 1 configuration with the least mean standard error (MSE) of 1.27. The MLPNN with the 4 5 1 architecture resulted in robust prediction of phenol degradation from the wastewater with coefficient of determination (R) of 0.999." @default.
- W3035963570 created "2020-06-25" @default.
- W3035963570 creator A5007187824 @default.
- W3035963570 creator A5028736636 @default.
- W3035963570 creator A5036334056 @default.
- W3035963570 creator A5041615497 @default.
- W3035963570 date "2020-05-01" @default.
- W3035963570 modified "2023-10-18" @default.
- W3035963570 title "Bayesian Regularization-Trained Multi-layer Perceptron Neural Network Predictive Modelling of Phenol Degradation using ZnO/Fe<sub>2</sub>O<sub>3</sub> photocatalyst" @default.
- W3035963570 cites W1645477854 @default.
- W3035963570 cites W1983861808 @default.
- W3035963570 cites W2053123029 @default.
- W3035963570 cites W2069581547 @default.
- W3035963570 cites W2093468807 @default.
- W3035963570 cites W2346868242 @default.
- W3035963570 cites W2397349486 @default.
- W3035963570 cites W2403782785 @default.
- W3035963570 cites W2772123271 @default.
- W3035963570 cites W2788180525 @default.
- W3035963570 cites W2791001464 @default.
- W3035963570 cites W2802415864 @default.
- W3035963570 cites W2884311850 @default.
- W3035963570 cites W2898214691 @default.
- W3035963570 cites W2905325973 @default.
- W3035963570 cites W2933878133 @default.
- W3035963570 cites W2937423940 @default.
- W3035963570 cites W2971693035 @default.
- W3035963570 cites W3014179099 @default.
- W3035963570 doi "https://doi.org/10.1088/1742-6596/1529/5/052058" @default.
- W3035963570 hasPublicationYear "2020" @default.
- W3035963570 type Work @default.
- W3035963570 sameAs 3035963570 @default.
- W3035963570 citedByCount "6" @default.
- W3035963570 countsByYear W30359635702020 @default.
- W3035963570 countsByYear W30359635702021 @default.
- W3035963570 countsByYear W30359635702023 @default.
- W3035963570 crossrefType "journal-article" @default.
- W3035963570 hasAuthorship W3035963570A5007187824 @default.
- W3035963570 hasAuthorship W3035963570A5028736636 @default.
- W3035963570 hasAuthorship W3035963570A5036334056 @default.
- W3035963570 hasAuthorship W3035963570A5041615497 @default.
- W3035963570 hasBestOaLocation W30359635701 @default.
- W3035963570 hasConcept C127413603 @default.
- W3035963570 hasConcept C154945302 @default.
- W3035963570 hasConcept C161790260 @default.
- W3035963570 hasConcept C162847780 @default.
- W3035963570 hasConcept C178790620 @default.
- W3035963570 hasConcept C179717631 @default.
- W3035963570 hasConcept C185592680 @default.
- W3035963570 hasConcept C192562407 @default.
- W3035963570 hasConcept C21880701 @default.
- W3035963570 hasConcept C2777702071 @default.
- W3035963570 hasConcept C2779679103 @default.
- W3035963570 hasConcept C39432304 @default.
- W3035963570 hasConcept C41008148 @default.
- W3035963570 hasConcept C50644808 @default.
- W3035963570 hasConcept C528095902 @default.
- W3035963570 hasConcept C57442070 @default.
- W3035963570 hasConcept C65165184 @default.
- W3035963570 hasConcept C76155785 @default.
- W3035963570 hasConcept C82685317 @default.
- W3035963570 hasConcept C87717796 @default.
- W3035963570 hasConcept C94061648 @default.
- W3035963570 hasConceptScore W3035963570C127413603 @default.
- W3035963570 hasConceptScore W3035963570C154945302 @default.
- W3035963570 hasConceptScore W3035963570C161790260 @default.
- W3035963570 hasConceptScore W3035963570C162847780 @default.
- W3035963570 hasConceptScore W3035963570C178790620 @default.
- W3035963570 hasConceptScore W3035963570C179717631 @default.
- W3035963570 hasConceptScore W3035963570C185592680 @default.
- W3035963570 hasConceptScore W3035963570C192562407 @default.
- W3035963570 hasConceptScore W3035963570C21880701 @default.
- W3035963570 hasConceptScore W3035963570C2777702071 @default.
- W3035963570 hasConceptScore W3035963570C2779679103 @default.
- W3035963570 hasConceptScore W3035963570C39432304 @default.
- W3035963570 hasConceptScore W3035963570C41008148 @default.
- W3035963570 hasConceptScore W3035963570C50644808 @default.
- W3035963570 hasConceptScore W3035963570C528095902 @default.
- W3035963570 hasConceptScore W3035963570C57442070 @default.
- W3035963570 hasConceptScore W3035963570C65165184 @default.
- W3035963570 hasConceptScore W3035963570C76155785 @default.
- W3035963570 hasConceptScore W3035963570C82685317 @default.
- W3035963570 hasConceptScore W3035963570C87717796 @default.
- W3035963570 hasConceptScore W3035963570C94061648 @default.
- W3035963570 hasIssue "5" @default.
- W3035963570 hasLocation W30359635701 @default.
- W3035963570 hasOpenAccess W3035963570 @default.
- W3035963570 hasPrimaryLocation W30359635701 @default.
- W3035963570 hasRelatedWork W1964127353 @default.
- W3035963570 hasRelatedWork W2089476120 @default.
- W3035963570 hasRelatedWork W2166908026 @default.
- W3035963570 hasRelatedWork W2349538661 @default.
- W3035963570 hasRelatedWork W2372089881 @default.
- W3035963570 hasRelatedWork W2384081549 @default.
- W3035963570 hasRelatedWork W2384572819 @default.
- W3035963570 hasRelatedWork W2393489678 @default.
- W3035963570 hasRelatedWork W2899084033 @default.
- W3035963570 hasRelatedWork W3201959511 @default.